scholarly journals Allelic variation contributes to bacterial host specificity

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Min Yue ◽  
Xiangan Han ◽  
Leon De Masi ◽  
Chunhong Zhu ◽  
Xun Ma ◽  
...  

Abstract Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.

2021 ◽  
Vol 22 (13) ◽  
pp. 6678
Author(s):  
Robert Eckenstaler ◽  
Ralf A. Benndorf

Urate homeostasis in humans is a complex and highly heritable process that involves i.e., metabolic urate biosynthesis, renal urate reabsorption, as well as renal and extrarenal urate excretion. Importantly, disturbances in urate excretion are a common cause of hyperuricemia and gout. The majority of urate is eliminated by glomerular filtration in the kidney followed by an, as yet, not fully elucidated interplay of multiple transporters involved in the reabsorption or excretion of urate in the succeeding segments of the nephron. In this context, genome-wide association studies and subsequent functional analyses have identified the ATP-binding cassette (ABC) transporter ABCG2 as an important urate transporter and have highlighted the role of single nucleotide polymorphisms (SNPs) in the pathogenesis of reduced cellular urate efflux, hyperuricemia, and early-onset gout. Recent publications also suggest that ABCG2 is particularly involved in intestinal urate elimination and thus may represent an interesting new target for pharmacotherapeutic intervention in hyperuricemia and gout. In this review, we specifically address the involvement of ABCG2 in renal and extrarenal urate elimination. In addition, we will shed light on newly identified polymorphisms in ABCG2 associated with early-onset gout.


1976 ◽  
Vol 230 (4) ◽  
pp. 1037-1041 ◽  
Author(s):  
DR Strome ◽  
RL Clancy ◽  
NC Gonzalez

Isolated rabbit hearts were perfused with rabbit red cells suspended in Ringer solution. A small volume of perfusate was recirculated for 10 min at Pco2 of 33.4 +/- 0.9 or 150.8 +/- 7.5 mmHg. Hypercapnia resulted in an increase in perfusate HCO3- concentration that was smaller than that observed when isolated perfusate was equilibrated in vitro with the same CO2 tensions (delta HCO-3e = 1.6 mM, P less than 0.01). This difference is consistent with a net movement of HCO3- into or H+ out of the mycardial cell, and cannot be accounted for by dilution of HCO3- in the myocardial interstitium. Recirculation of perfusate through the coronary circulation at normal Pco2 for two consecutive 10-min periods was not followed by changes in perfusate HCO3- concentration. A high degree of correlation (r = 0.81) was observed between intracellular HCO-3e concentration and the corresponding delta HCO-3e in individual experiments. The results suggest that transmembrane exchange of H+ or HCO3- is a buffer mechanism for CO2 in the myocardial cell.


2011 ◽  
Vol 96 (2) ◽  
pp. E394-E403 ◽  
Author(s):  
Neeraj K. Sharma ◽  
Kurt A. Langberg ◽  
Ashis K. Mondal ◽  
Steven C. Elbein ◽  
Swapan K. Das

abstract Context: Genome-wide association scans (GWAS) have identified novel single nucleotide polymorphisms (SNPs) that increase T2D susceptibility and indicated the role of nearby genes in T2D pathogenesis. Objective: We hypothesized that T2D-associated SNPs act as cis-regulators of nearby genes in human tissues and that expression of these transcripts may correlate with metabolic traits, including insulin sensitivity (SI). Design, Settings, and Patients: Association of SNPs with the expression of their nearest transcripts was tested in adipose and muscle from 168 healthy individuals who spanned a broad range of SI and body mass index (BMI) and in transformed lymphocytes (TLs). We tested correlations between the expression of these transcripts in adipose and muscle with metabolic traits. Utilizing allelic expression imbalance (AEI) analysis we examined the presence of other cis-regulators for those transcripts in TLs. Results: SNP rs9472138 was significantly (P = 0.037) associated with the expression of VEGFA in TLs while rs6698181 was detected as a cis-regulator for the PKN2 in muscle (P = 0.00027) and adipose (P = 0.018). Significant association was also observed for rs17036101 (P = 0.001) with expression of SYN2 in adipose of Caucasians. Among 19 GWAS-implicated transcripts, expression of VEGFA in adipose was correlated with BMI (r = −0.305) and SI (r = 0.230). Although only a minority of the T2D-associated SNPs were validated as cis-eQTLs for nearby transcripts, AEI analysis indicated presence of other cis-regulatory polymorphisms in 54% of these transcripts. Conclusions: Our study suggests that a small subset of GWAS-identified SNPs may increase T2D susceptibility by modulating expression of nearby transcripts in adipose or muscle.


2020 ◽  
Author(s):  
Steven J Lubbe ◽  
Yvette C. Wong ◽  
Bernabe Bustos ◽  
Soojin Kim ◽  
Jana Vandrovcova ◽  
...  

ABSTRACTEarly-onset Parkinson’s disease (EOPD) can be caused by biallelic mutations in PRKN, DJ1 and PINK1. However, while the identification of novel genes is becoming increasingly challenging, new insights into EOPD genetics have important relevance for understanding the pathways driving disease pathogenesis. Here, using extended runs of homozygosity (ROH) >8Mb as a marker for possible autosomal recessive inheritance, we identified 90 EOPD patients with extended ROH. Investigating rare, damaging homozygous variants to identify candidate genes for EOPD, 81 genes were prioritised. Through the assessment of biallelic (homozygous and compound heterozygous) variant frequencies in cases and controls from three independent cohorts totalling 3,381 PD patients and 2,463 controls, we identified two biallelic MIEF1 variant carriers among EOPD patients. We further investigated the role of disease-associated variants in MIEF1 which encodes for MID51, an outer mitochondrial membrane protein, and found that putative EOPD-associated variants in MID51 preferentially disrupted its oligomerization state. These findings provide further support for the role of mitochondrial dysfunction in the development of PD. Together, we have used genome-wide homozygosity mapping to identify potential EOPD genes, and future studies incorporating expanded datasets and further functional analyses will help to determine their roles in disease aetiology.


2022 ◽  
Author(s):  
William Santus ◽  
Amisha Rana ◽  
Jason Devlin ◽  
Kaitlyn Kiernan ◽  
Carol Jacob ◽  
...  

Abstract The fungal gut microbiota (mycobiota) has been implicated in diseases that disturb gut homeostasis. However, little is known about functional relationships between bacteria and fungi in the gut during infectious colitis. We investigated the role of fungal metabolites during infection with the intestinal pathogen Salmonella enterica serovar Typhimurium. We found that in the gut lumen, both the mycobiota and fungi present in the diet can be a source of siderophores, small molecules that scavenge iron from the host. The ability to use fungal siderophores, such as ferrichrome and coprogen, conferred a competitive growth advantage to Salmonella strains expressing the fungal siderophore receptors FhuA or FhuE in vitro and in a mouse model. Our study highlights the role of inter-kingdom cross-feeding between fungi and Salmonella, and elucidates a new function for the gut mycobiota, revealing the importance of these under-studied members of the gut ecosystem during bacterial infection.


2020 ◽  
Vol 6 (43) ◽  
pp. eabb3063
Author(s):  
Wei Xu ◽  
Si-Da Han ◽  
Can Zhang ◽  
Jie-Qiong Li ◽  
Yan-Jiang Wang ◽  
...  

Progranulin (PGRN) is a secreted pleiotropic glycoprotein associated with the development of common neurodegenerative diseases. Understanding the pathophysiological role of PGRN may help uncover biological underpinnings. We performed a genome-wide association study to determine the genetic regulators of cerebrospinal fluid (CSF) PGRN levels. Common variants in region of FAM171A2 were associated with lower CSF PGRN levels (rs708384, P = 3.95 × 10−12). This was replicated in another independent cohort. The rs708384 was associated with increased risk of Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia and could modify the expression of the FAM171A2 gene. FAM171A2 was considerably expressed in the vascular endothelium and microglia, which are rich in PGRN. The in vitro study further confirmed that the rs708384 mutation up-regulated the expression of FAM171A2, which caused a decrease in the PGRN level. Collectively, genetic, molecular, and bioinformatic findings suggested that FAM171A2 is a key player in regulating PGRN production.


2020 ◽  
Vol 11 ◽  
Author(s):  
Peter McErlean ◽  
Audrey Kelly ◽  
Jaideep Dhariwal ◽  
Max Kirtland ◽  
Julie Watson ◽  
...  

BackgroundAsthma is a chronic airway disease driven by complex genetic–environmental interactions. The role of epigenetic modifications in bronchial epithelial cells (BECs) in asthma is poorly understood.MethodsWe piloted genome-wide profiling of the enhancer-associated histone modification H3K27ac in BECs from people with asthma (n = 4) and healthy controls (n = 3).ResultsWe identified n = 4,321 (FDR < 0.05) regions exhibiting differential H3K27ac enrichment between asthma and health, clustering at genes associated predominately with epithelial processes (EMT). We identified initial evidence of asthma-associated Super-Enhancers encompassing genes encoding transcription factors (TP63) and enzymes regulating lipid metabolism (PTGS1). We integrated published datasets to identify epithelium-specific transcription factors associated with H3K27ac in asthma (TP73) and identify initial relationships between asthma-associated changes in H3K27ac and transcriptional profiles. Finally, we investigated the potential of CRISPR-based approaches to functionally evaluate H3K27ac-asthma landscape in vitro by identifying guide-RNAs capable of targeting acetylation to asthma DERs and inducing gene expression (TLR3).ConclusionOur small pilot study validates genome-wide approaches for deciphering epigenetic mechanisms underlying asthma pathogenesis in the airways.


TH Open ◽  
2018 ◽  
Vol 02 (03) ◽  
pp. e272-e279
Author(s):  
Elien Vermeersch ◽  
Benedicte Nuyttens ◽  
Claudia Tersteeg ◽  
Katleen Broos ◽  
Simon De Meyer ◽  
...  

AbstractDespite the absence of the genome in platelets, transcription profiling provides important insights into platelet function and can help clarify abnormalities in platelet disorders. The Bloodomics Consortium performed whole-genome expression analysis comparing in vitro–differentiated megakaryocytes (MKs) with in vitro–differentiated erythroblasts and different blood cell types. This allowed the identification of genes with upregulated expression in MKs compared with all other cell lineages, among the receptors BAMBI, LRRC32, ESAM, and DCBLD2. In a later correlative analysis of genome-wide platelet RNA expression with interindividual human platelet reactivity, LLRFIP and COMMD7 were additionally identified. A functional genomics approach using morpholino-based silencing in zebrafish identified various roles for all of these selected genes in thrombus formation. In this review, we summarize the role of the six identified genes in zebrafish and discuss how they correlate with subsequently performed mouse experiments.


Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3403-3410 ◽  
Author(s):  
G. K. Paterson ◽  
D. B. Cone ◽  
S. E. Peters ◽  
D. J. Maskell

The enzyme phosphoglucomutase (Pgm) catalyses the interconversion of glucose 1-phosphate and glucose 6-phosphate and contributes to glycolysis and the generation of sugar nucleotides for biosynthesis. To assess the role of this enzyme in the biology of the pathogen Salmonella enterica serovar Typhimurium we have characterized a pgm deletion mutant in strain SL1344. Compared to SL1344, SL1344 pgm had impaired growth in vitro, was deficient in the ability to utilize galactose as a carbon source and displayed reduced O-antigen polymer length. The mutant was also more susceptible to antimicrobial peptides and showed decreased fitness in the mouse typhoid model. The in vivo phenotype of SL1344 pgm indicated a role for pgm in the early stages of infection, most likely through deficient O-antigen production. Although pgm mutants in other pathogens have potential as live attenuated vaccine strains, SL1344 pgm was not sufficiently attenuated for such use.


2008 ◽  
Vol 19 (12) ◽  
pp. 5456-5477 ◽  
Author(s):  
Yunkyoung Song ◽  
Seon Ah Cheon ◽  
Kyung Eun Lee ◽  
So-Yeon Lee ◽  
Byung-Kyu Lee ◽  
...  

RAM (regulation of Ace2p transcription factor and polarized morphogenesis) is a conserved signaling network that regulates polarized morphogenesis in yeast, worms, flies, and humans. To investigate the role of the RAM network in cell polarity and hyphal morphogenesis of Candida albicans, each of the C. albicans RAM genes (CaCBK1, CaMOB2, CaKIC1, CaPAG1, CaHYM1, and CaSOG2) was deleted. All C. albicans RAM mutants exhibited hypersensitivity to cell-wall- or membrane-perturbing agents, exhibiting cell-separation defects, a multinucleate phenotype and loss of cell polarity. Yeast two-hybrid and in vivo functional analyses of CaCbk1p and its activator, CaMob2p, the key factors in the RAM network, demonstrated that the direct interaction between the SMA domain of CaCbk1p and the Mob1/phocein domain of CaMob2p was necessary for hyphal growth of C. albicans. Genome-wide transcription profiling of a Camob2 mutant suggested that the RAM network played a role in serum- and antifungal azoles–induced activation of ergosterol biosynthesis genes, especially those involved in the late steps of ergosterol biosynthesis, and might be associated, at least indirectly, with the Tup1p-Nrg1p pathway. Collectively, these results demonstrate that the RAM network is critically required for hyphal growth as well as normal vegetative growth in C. albicans.


Sign in / Sign up

Export Citation Format

Share Document