scholarly journals Neuronal GPR30 Participates in Genistein-Mediated Neuroprotection in Ischemic Stroke by Inhibiting NLRP3 Inflammasome Activation in Ovariectomized Female Mice

Author(s):  
Shiquan Wang ◽  
Zhen Zhang ◽  
Jin Wang ◽  
Lina Ma ◽  
Jianshuai Zhao ◽  
...  

Abstract Estrogen replacement therapy (ERT) is potentially beneficial for the prevention and treatment of postmenopausal cerebral ischemia but inevitably increases the risk of cerebral hemorrhage and breast cancer when used for a long period of time. Genistein, a natural phytoestrogen, has been reported to contribute to the recovery of postmenopausal ischemic stroke with reduced risks. However, the underlying mechanism of genistein-mediated neuroprotection remains unclear. We reported that genistein exerted significant neuroprotective effects by enhancing the expression of neuronal G protein-coupled receptor 30 (GPR30) in the ischemic penumbra after cerebral reperfusion in ovariectomized (OVX) mice, and this effect was achieved through GPR30-mediated inhibition of nod-like receptor protein 3 (NLRP3) inflammasome activation. In addition, we found that Peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) was the pivotal molecule that participated in GPR30-mediated inhibition of NLRP3 inflammasome activation in OVX mice after ischemia/reperfusion (I/R) injury. Our data suggest that the neuronal GPR30/PGC-1α pathway plays an important role in genistein-mediated neuroprotection against I/R injury in OVX mice.

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 897 ◽  
Author(s):  
He ◽  
Li ◽  
Meng ◽  
Wu ◽  
Zhao ◽  
...  

Background: Nod-like receptor protein 3 (NLRP3) inflammasome is a crucial contributor in the inflammatory process during cerebral ischemia/reperfusion (I/R) injury. ATF4 plays a pivotal role in the pathogenesis of cerebral I/R injury, however, its function and underlying mechanism are not fully characterized yet. In the current study, we examined whether ATF4 ameliorates cerebral I/R injury by inhibiting NLRP3 inflammasome activation and whether mitophagy is involved in this process. In addition, we explored the role of parkin in ATF4-mediated protective effects. Method: To address these issues, healthy male adult Sprague-Dawley rats were exposed to middle cerebral artery occlusion for 1 h followed by 24 h reperfusion. Adeno-associated virus (AAV) and siRNA were injected into rats to overexpress and knockdown ATF4 expression, respectively. After pretreatment with AAV, mdivi-1(mitochondrial division inhibitor-1) was injected into rats to block mitophagy activity. Parkin expression was knockdown using specific siRNA after AAV pretreatment. Result: Data showed that ATF4 overexpression induced by AAV was protective against cerebral I/R injury, as evidenced by reduced cerebral infraction volume, decreased neurological scores and improved outcomes of HE and Nissl staining. In addition, overexpression of ATF4 gene was able to up-regulate Parkin expression, enhance mitophagy activity and inhibit NLRP3 inflammasome-mediated inflammatory response. ATF4 knockdown induced by siRNA resulted in the opposite effects. Furthermore, ATF4-mediated inhibition of NLRP3 inflammasome activation was strongly affected by mitophagy blockage upon mdivi-1 injection. Besides, ATF4-mediated increase of mitophagy activity and inhibition of NLRP3 inflammasome activation were effectively reversed by Parkin knockdown using siRNA. Conclusion: Our study demonstrated that ATF4 is able to alleviate cerebral I/R injury by suppressing NLRP3 inflammasome activation through parkin-dependent mitophagy activity. These results may provide a new strategy to relieve cerebral I/R injury by modulating mitophagy-NLRP3 inflammasome axis.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Zhen Qiu ◽  
Shaoqing Lei ◽  
Bo Zhao ◽  
Yang Wu ◽  
Wating Su ◽  
...  

The reactive oxygen species- (ROS-) induced nod-like receptor protein-3 (NLRP3) inflammasome triggers sterile inflammatory responses and pyroptosis, which is a proinflammatory form of programmed cell death initiated by the activation of inflammatory caspases. NLRP3 inflammasome activation plays an important role in myocardial ischemia/reperfusion (MI/R) injury. Our present study investigated whether diabetes aggravated MI/R injury through NLRP3 inflammasome-mediated pyroptosis. Type 1 diabetic rat model was established by intraperitoneal injection of streptozotocin (60 mg/kg). MI/R was induced by ligating the left anterior descending artery (LAD) for 30 minutes followed by 2 h reperfusion. H9C2 cardiomyocytes were exposed to high glucose (HG, 30 mM) conditions and hypoxia/reoxygenation (H/R) stimulation. The myocardial infarct size, CK-MB, and LDH release in the diabetic rats subjected to MI/R were significantly higher than those in the nondiabetic rats, accompanied with increased NLRP3 inflammasome activation and increased pyroptosis. Inhibition of inflammasome activation with BAY11-7082 significantly decreased the MI/R injury.In vitrostudies showed similar effects, as BAY11-7082 or the ROS scavenger N-acetylcysteine, attenuated HG and H/R-induced H9C2 cell injury. In conclusion, hyperglycaemia-induced NLRP3 inflammasome activation may be a ROS-dependent process in pyroptotic cell death, and NLRP3 inflammasome-induced pyroptosis aggravates MI/R injury in diabetic rats.


2020 ◽  
Author(s):  
Jianjun Jiang ◽  
Jin Yang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
...  

Abstract Background: The NOD-Like Receptor Protein 3 (NLRP3) inflammasome is a crucial component of an array of inflammatory conditions. It functions by boosting the secretion of pro-inflammatory cytokines: interleukin-1β (IL-1β) and interleukin-18 (IL-18). Previous studies have established the vital role of the acid sphingomyelinase (ASM)/ceramide (Cer) pathway in the functional outcome of cells, with a particular emphasis on the inflammatory processes. This study aimed to explore the effects and associated underlying mechanism of Cer-induced NLRP3 inflammasome activation.Methods: Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells was used as an in vitro inflammatory model. Western blotting and Real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were evaluated using ELISA kits. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content.Results: Imipramine, a well-known inhibitor of ASM, significantly inhibited ASM activity and inhibited Cer accumulation, which indicated ASM activation. Besides, it also suppressed the LPS/ATP-induced expression of proteins and mRNA: thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β and IL-18. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced TXNIP/NLRP3 inflammasome activation; however, it did not affect LPS/ATP-induced ASM activation and ceramide production. Further analysis showed that the exogenous C2-Cer treated J774A.1 cells induced the overexpression of TXNIP, NLRP3, caspase-1, IL-1β and IL-18. Besides, TXNIP siRNA or verapamil inhibited C2-Cer-induced TXNIP overexpression and NLRP3 inflammasome activation.Conclusion: This study demonstrated the involvement of the ASM/Cer/TXNIP signaling pathway in NLRP3 inflammasome activation.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Wenli Yu ◽  
Jingshu Lyu ◽  
Lili Jia ◽  
Mingwei Sheng ◽  
Hongli Yu ◽  
...  

Hepatic ischemia-reperfusion (HIR) has been proven to trigger oxidative stress and pyroptosis in the hippocampus. Sirtuin 3 (SIRT3) is an essential mitochondrial protein deacetylase regulating oxidative stress and mitophagy. Dexmedetomidine (Dex) has been demonstrated to confer neuroprotection in different brain injury models. However, whether the protective effects of Dex following HIR are orchestrated by activation of SIRT3-mediated mitophagy and inhibition of NOD-like receptor protein 3 (NLRP3) inflammasome activation remains unknown. Herein, two-week-old rats were treated with Dex or a selective SIRT3 inhibitor (3-TYP)/autophagy inhibitor (3-MA) and then subjected to HIR. The results revealed that Dex treatment effectively attenuated neuroinflammation and cognitive deficits via upregulating SIRT3 expression and activity. Furthermore, Dex treatment inhibited the activation of NLRP3 inflammasome, while 3-TYP and 3-MA eliminated the protective effects of Dex, suggesting that SIRT3-mediated mitophagy executes the protective effects of Dex. Moreover, 3-TYP treatment downregulated the expression level of SIRT3 downstream proteins: forkhead-box-protein 3α (FOXO3α), superoxide dismutase 2 (SOD2), peroxiredoxin 3 (PRDX3), and cyclophilin D (CYP-D), which were barely influenced by 3-MA treatment. Notably, both 3-TYP and 3-MA were able to offset the antioxidative and antiapoptosis effects of Dex, indicating that SIRT3-mediated mitophagy may be the last step and the major pathway executing the neuroprotective effects of Dex. In conclusion, Dex inhibits HIR-induced NLRP3 inflammasome activation mainly by triggering SIRT3-mediated mitophagy.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chad N. Brocker ◽  
Donghwan Kim ◽  
Tisha Melia ◽  
Kritika Karri ◽  
Thomas J. Velenosi ◽  
...  

AbstractExploring the molecular mechanisms that prevent inflammation during caloric restriction may yield promising therapeutic targets. During fasting, activation of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) promotes the utilization of lipids as an energy source. Herein, we show that ligand activation of PPARα directly upregulates the long non-coding RNA gene Gm15441 through PPARα binding sites within its promoter. Gm15441 expression suppresses its antisense transcript, encoding thioredoxin interacting protein (TXNIP). This, in turn, decreases TXNIP-stimulated NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, caspase-1 (CASP1) cleavage, and proinflammatory interleukin 1β (IL1B) maturation. Gm15441-null mice were developed and shown to be more susceptible to NLRP3 inflammasome activation and to exhibit elevated CASP1 and IL1B cleavage in response to PPARα agonism and fasting. These findings provide evidence for a mechanism by which PPARα attenuates hepatic inflammasome activation in response to metabolic stress through induction of lncRNA Gm15441.


2020 ◽  
Vol 19 (5) ◽  
pp. 1031-1036
Author(s):  
Guixiang Zhao ◽  
Xiaoyun Ma ◽  
Juledezi Hailati ◽  
Zhen Bao ◽  
Maerjiaen Bakeyi ◽  
...  

Purpose: To determine the involvement of NLRP3 signaling pathway in the preventive role of daucosterol in acute myocardial infarction (AMI).Methods: H9C2 cells were pretreated with daucosterol before hypoxia/reoxygenation (HR) injury. Myocardial ischemia reperfusion (IR) was established in male SD rats, followed by reperfusion. Myocardial infarct size was measured. The serum levels of creatine kinase (CK), lactate  dehydrogenase (LDH), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were determined using commercial kits. NLRP3 inflammasome activation was assessed by western blotting.Results: Myocardial infarct size was smaller after IR injury in rats pretreated with daucosterol (10 and 50 mg/kg) than that pretreated with daucosterol (0 and 1 mg/kg). The increase in LDH, CK, and MDA levels after IR injury was reduced following daucosterol pretreatment. Reactive oxygen species (ROS) production increased, whereas T-SOD activity decreased after IR injury. These changes were prevented by pretreatment of daucosterol (10 and 50 mg/kg). Protein expression of NLRP3 inflammasome increased after IR injury in H9C2 cells while pretreatment with daucosterol inhibited the upregulation of NLRP3 inflammasome.Conclusion: The cardioprotective effect of daucosterol pretreatment appears to be mediated via the inactivation of ROS-related NLRP3 inflammasome, suggesting that daucosteol might be a potential therapeutic drug for AMI. Keywords: Daucosterol, Myocardial ischemia, Reperfusion injury, Reactive oxygen species, NLRP3 inflammasome


Sign in / Sign up

Export Citation Format

Share Document