scholarly journals FpgMBV1 Alleviates The Pathogenicity of Fusarium Pseudograminearum to Wheat Plants: A Megabirnavirus Case Study

Author(s):  
Yuan Xie ◽  
Zhifang Wang ◽  
Ke Li ◽  
Dongwei Liu ◽  
Yifan Jia ◽  
...  

Abstract Background: Fusarium pseudograminearum is the predomenant causal agent of devastating crown rot diseases in cereal crops around the world. Mycoviruses have attracted increasing attention as potential biological control agents on plant diseases. The unique mycoviruse isolated from F. pseudograminearum is Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1), which is a new member of the family Megabirnaviridae. To determine the hypovirulence effects of FpgMBV1 on F. pseudograminearum to wheat plants is critical for the potential application of FpgMBV1 in the control of cereal crown rot disease. Methods: Hyphal tip cultures were conducted to obtain a FpgMBV1-free strain, named as FC136-2A-V-. A hyg gene was transformed into a highly virulent virus-negative stain WZ-8A of F. pseudograminearum to obtain the deduced strain WZ-8A-HygR-V-. WZ-8A-HygR-V- was used in pairing culture with the FpgMBV1-carrying F. pseudograminearum strain FC136-2A to obtain a FpgMBV1-positive strain WZ-8A-HygR-V+. Then the two pairs of strains, FC136-2A-V-/FC136-2A and WZ-8A-HygR-V-/WZ-8A-HygR-V+, were used to determine the potential effect on F. pseudograminearum by the infection of FpgMBV1 through tests on the growth, sensitivity to stress and cellophane penetrating ability in vitro and the pathogenicity to wheat plants.Results: FpgMBV1 could be cured by hyphal tip culture and horizontally transferred between F. pseudograminearum strains through pairing culture. Reduction of FpgMBV1-carrying strains on hyphal growth were found under the treatment of 0.5% SDS. No differences in the growth rates of tested strains in the treatments with 1 M NaCl, 1 M KCl, or 15 mM H2O2. Comparing to virus-negative strains, the In vitro cellophane penetrating ability was lost in FpgMBV1-carrying strains. The disease index of wheat plants inoculated with FC136-2A-V- was significantly higher than that inoculated with FC136-2A, while the pathogenicity of WZ-8A-HygR-V+ reduced significantly comparing to that of WZ-8A-HygR-V-.Conclusions: FpgMBV1 is the causal agent of the low pathogenicity to wheat plants of its original host F. pseudograminearum strain FC136-2A. And FpgMBV1 could be horizontally transferred to another F. pseudograminearum strain and reduce its pathogenicity to wheat plants.

2021 ◽  
Author(s):  
Yuan Xie ◽  
Zhifang Wang ◽  
Ke Li ◽  
Dongwei Liu ◽  
Yifan Jia ◽  
...  

Fusarium pseudograminearum is a phytopathogen that causes wheat crown rot disease worldwide. Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1) was isolated from the hypovirulent strain FC136-2A of F. pseudograminearum as a novel dsRNA mycovirus belonging to the family Megabirnaviridae. Here we examined the effects of FpgMBV1 on colony morphology and pathogenicity of F. pseudograminearum. Through hyphal tip culture, we obtained virus-free progeny of strain FC136-2A, referred to as FC136-2A-V-.FpgMBV1 was transferred horizontally to another virus-free strain, WZ-8A-HygR-V-. The progeny that obtained through horizontal transfer was referred to as WZ-8A-HygR-V+. Colony morphology was similar between the FpgMBV1-positive and -negative strains. The ability to penetrate cellophane in vitro was lost and pathogenicity on wheat plants was reduced significantly in the FpgMBV1-positive strains relative to the FpgMBV1-negative strains. Microscopic observations showed a 6-h delay in the formation of appressoria-like structures in FC136-2A relative to FC136-2A-V-. And mycelium extension was significantly longer in wheat coleoptiles infected by WZ-8A-HygR-V- than in that infected by WZ-8A-HygR-V+ at 12 and 20 hours after inoculation (HAI). In addition, expression of five genes that encode cell wall-degrading enzymes differed significantly between FpgMBV1-positive and -negative strains at 12 and 20 HAI during early infection of wheat cells by conidia. This study provides evidence for the hypovirulence effect of FpgMBV1 on F. pseudograminearum and suggests that the underlying mechanism involves unsuccessful early infection and perhaps cell wall degradation.


BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


2021 ◽  
Vol 13 (1) ◽  
pp. 69-80
Author(s):  
Majida Hadi Mahdi Alsaady ◽  
Hussein Ali Salim ◽  
Rakib A. Al-ani ◽  
Hadi M. Aboud ◽  
Jamal Talib M Al Roubaie

In this study, the antagonistic effect of five bacteria genera namely Bacillus, Pseudomonas, Azotobacter, Azospirillum, and Streptomyces isolated from rhizosphere of wheat were evaluated against Fusarium graminearum as potential biocontrol agents in vitro. F. graminearum was molecularly diagnosed using the Polymerase chain reaction (PCR) technique. Each bacteria were tested for the production of catalase enzyme, oxidase enzyme, analysis of starch, analyze of gelatin, and the motility, where Azotobacter, Azospirillum, and Bacillus subtilis were positive for all tested. Fungal inhibition tests were performed by using the dual culture method and agar well diffusion technique. Among them, Streptomyces and Azospirillum exhibited potent inhibition to the growth of F. graminearum (72.14% and 66.42%) respectively, followed by B.pumillus, P.fluorescens, B. subtilis and Azotobacter ( 58.28%, 43.23%, 39.71% and 35.71%) respectively as compared with the control treatment (0.0%).The dry weight of the fungus biomass was decreased with bacteria P. fluorescens, Streptomyces sp, Azotobacter sp, Azospirillum sp, B. subtilis, and B. pumillus which reached (0.114, 0.103, 0.147, 0.101, 0.143, and 0.107 g) respectively compared to the control treatment that was 0. 665 g.


2020 ◽  
Author(s):  
N. L. Knight ◽  
B. Macdonald ◽  
C. Percy ◽  
M. W. Sutherland

AbstractHexaploid spring wheat (Triticum aestivum) may exhibit significant crown rot disease responses to infection by Fusarium pseudograminearum, with a range of susceptibility levels available in commercial cultivars. Dry conditions during grain-fill may lead to the expression of prematurely senescing culms, which typically fail to set grain. Assessment of hexaploid spring wheat plants exhibiting both non-senescent and prematurely senescent culms was performed using visual discolouration, Fusarium pseudograminearum biomass, vascular colonisation and quantification of wheat DNA in culm sections sampled at three different heights above the crown and at the peduncle. A comparison of these parameters at four time points from milk development, when senescent culms are first observed, to maturity was conducted. Samples from six commercial cultivars were collected in 2014 from Narrabri and Tamworth, New South Wales and Wellcamp, Queensland. Prematurely senescent culms exhibited greater visual discolouration, Fusarium pseudograminearum biomass and vascular colonisation than non-senescent culms in each cultivar. Colonisation of xylem and phloem tissue was extensive in the basal portions of prematurely senescent culms (36 to 99%), and suggests significant impacts on water and nutrient movement during crown rot disease. Maturation coincided with significant changes in Fusarium pseudograminearum biomass and vascular colonisation. Wheat DNA content varied among cultivars, culm conditions, culm sections and sampling times. The variation in the severity of disease states between culms of the same plant suggests that the timing of initiation of infection in individual culms may vary.


2012 ◽  
Vol 160 (7-8) ◽  
pp. 412-417 ◽  
Author(s):  
Yaxi Liu ◽  
Jun Ma ◽  
Wei Yan ◽  
Guijun Yan ◽  
Meixue Zhou ◽  
...  

2003 ◽  
Vol 49 (4) ◽  
pp. 253-262 ◽  
Author(s):  
Yiu-Kwok Chan ◽  
Wayne A McCormick ◽  
Keith A Seifert

Bacteria were isolated from a cultivated soil and screened for antagonistic activity against Fusarium graminearum, a predominant agent of ear rot and head blight in cereal crops. Based on its in vitro effectiveness, isolate D1/2 was selected for characterization and identified as a strain of Bacillus subtilis by phenotypic tests and comparative analysis of its 16S ribosomal RNA gene (rDNA) sequence. It inhibited the mycelial growth of a collection of common fungal phytopathogens, including eight Fusarium species, three other ascomycetes, and one basidiomycete. The cell-free culture filtrate of D1/2 at different dilutions was active against macroconidium germination and hyphal growth of F. graminearum, depending on the initial macroconidium density. It induced the formation of swollen hyphal cells in liquid cultures of this fungus grown from macroconidia. A bioassay also demonstrated that D1/2 offered in planta protection against the damping-off disease in alfalfa seedlings caused by F. graminearum, while the type strain of B. subtilis was ineffective. Hence, B. subtilis D1/2 or its culture filtrate has potential application in controlling plant diseases caused by Fusarium.Key words: antifungal activity, Bacillus subtilis, biological control, biopesticide, Fusarium species.


2006 ◽  
Vol 69 (1-3) ◽  
pp. 73-85 ◽  
Author(s):  
Agnieszka M. Mudge ◽  
Ruth Dill-Macky ◽  
Yanhong Dong ◽  
Donald M. Gardiner ◽  
Rosemary G. White ◽  
...  

2021 ◽  
Vol 57 (No. 2) ◽  
pp. 122-133
Author(s):  
Radix Suharjo ◽  
Hani Anggrainy Oktaviana ◽  
Titik Nur Aeny ◽  
Cipta Ginting ◽  
Rachmansyah Arianto Wardhana ◽  
...  

Sixteen bacterial strains showing oval, convex with a white colony colour were obtained from the water-soaked lesions on the petioles and leaves of infected papaya (cv. calina) collected from a papaya field in Lampung Timur, Indonesia. The pathogenicity test showed that all the strains produced the same symptoms with those found in the field. Four representative strains were then chosen for further investigation. The phenotypic characteristics revealed that the strains resembled Erwinia mallotivora. Two representative strains were further identified using a 16SrDNA sequence analysis. The result showed that the strains were placed within the group of the type strain and the reference strains of E. mallotivora. To the best of our knowledge, this is the first finding of E. mallotivora as the causal agent of papaya crown rot disease in Indonesia. Among the sixteen plants used for the host range test, the symptom was only observed on eggplants, but not on the other fifteen plant species.


2019 ◽  
Vol 14 (6) ◽  
pp. 196
Author(s):  
Siti Juariyah ◽  
Efi Toding Tondok ◽  
Meity Suradji Sinaga

Trichoderma and Gliocladium for Controling Fusarium Root Rot Disease of Oil Palm SeedlingsFusarium spp. have been reported as the causal agent of common spear rot and crown rot diseases on oil palm.  An effective strategy to control these diseases is not available yet. This research was aimed to find biocontrol agents for effective control of crown rot disease on oil palm seedlings caused by Fusarium spp. The experiment consisted of 3 parts i.e. pathogenicity test of 3 isolates of Fusarium, identification and in vitro test of biocontrol agents, and in planta test of biocontrol agents against Fusarium spp. In vitro test was done through dual culture test and test for volatile compound produced by the biocontrol agents. In planta test was conducted through inoculation of Fusarium spp. into oil palm seedlings growing on medium containing  selected biocontrol agents i.e. Trichoderma harzianum, T. virens, T. inhamatum, and Gliocladium fimbriatum. In vitro test showed that Gliocladium fimbriatum 1 and 2 were inhibited effectively the growth of Fusarium spp. on the dual culture test, whereas T. harzianum Gadingrejo 2 was inhibited effectively the growth of Fusarium spp. on volatile compound test. The application of biocontrol agents was effective to protect oil palm seedlings from Fusarium spp. infection.


Sign in / Sign up

Export Citation Format

Share Document