scholarly journals Biological control of strawberry crown rot, root rot and grey mould by the beneficial fungus Aureobasidium pullulans

BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.

2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

Abstract Utilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control, crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33- 48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea . In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


2018 ◽  
Vol 54 (No. 4) ◽  
pp. 248-257 ◽  
Author(s):  
Kheireddine Amina ◽  
Essghaier Badiâa ◽  
Hedi Abdeljabar ◽  
Sadfi-Zouaoui Cyrine Dhieb Najla

Botrytis cinerea, the causal agent of grey mould, is a predominant agent causing extensive postharvest and quality losses of apples in Tunisia and worldwide. Efforts to manage this disease have met with limited success. For this reason, the use of microorganism preparations to control fungal diseases as an alternative to fungicides became an urgent need. From a total of 60 epiphytic yeasts, 10 were assessed in vitro against B. cinerea and selected isolates showing antagonism were evaluated for their ability to suppress the grey mould in vivo. On Petri plates, the most promising strains (three strains of Aureobasidium pullulans, one Cryptococcus flavescens, and one Citeromyces matritensis) showed a zone of inhibition against the pathogen fungus not exceeding 10 mm. In vivo, these isolates showed a remarkable antifungal activity since they significantly reduced disease severity on apples from 63% to 95% compared to the control. In conclusion, the work has demonstrated that the three strains, L7 of Aureobasidium pullulans, L2 of Citeromyces matritensis, and L10 of Cryptococcus flavescens, were highly effective and can be used as potential biocontrol agents in controlling the post-harvest decay of apples caused by B. cinerea.


Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2046-2052 ◽  
Author(s):  
Chunyi Mi ◽  
Ruihuan Yang ◽  
Junfeng Rao ◽  
Shaozhou Yang ◽  
Fugang Wei ◽  
...  

Root rot is an important disease hampering the sustainable cultivation of Panax notoginseng. Culture-dependent and independent techniques were used to elucidate the dominant fungal pathogen of rusty root rot of P. notoginseng. Based on Illumina sequencing profiles for fungi using ITS primers, five phyla—namely Ascomycota, Basidiomycota, Glomeromycota, Zygomycota, and Chytridiomycota—were identified, and the analyses showed that the Ascomycota was the dominant phylum (∼50 to 97%), especially in the symptomatic samples. Out of 226 total genera identified, seven genera had over 1% average abundance, including Ilyonectria, Fusarium, Tetracladium, Cladosporium, Rhizophagus, Alternaria, and Perisporiopsis. However, only Ilyonectria was the predominant genera in the symptomatic samples (∼76 to 80%), while the others, including Fusarium, had higher abundances in asymptomatic samples. Based on in vitro and in vivo pathogenicity, the isolate G3B was demonstrated to be the pathogen causing rusty root rot of P. notoginseng, and it was identified as Ilyonectria mors-panacis. Based on primers F2-R2 targeting the His3 gene of Ilyonectria, real-time quantitative PCR (qPCR) was performed as an additional proof confirming that I. mors-panacis was the dominant pathogen in the symptomatic samples during the years of the study (2014-2015).


2021 ◽  
Vol 7 (6) ◽  
pp. 428
Author(s):  
Men Thi Ngo ◽  
Minh Van Nguyen ◽  
Jae Woo Han ◽  
Myung Soo Park ◽  
Hun Kim ◽  
...  

In the search for antifungal agents from marine resources, we recently found that the culture filtrate of Trichoderma longibrachiatum SFC100166 effectively suppressed the development of tomato gray mold, rice blast, and tomato late blight. The culture filtrate was then successively extracted with ethyl acetate and n-butanol to identify the fungicidal metabolites. Consequently, a new compound, spirosorbicillinol D (1), and a new natural compound, 2′,3′-dihydro-epoxysorbicillinol (2), together with 11 known compounds (3–13), were obtained from the solvent extracts. The chemical structures were determined by spectroscopic analyses and comparison with literature values. The results of the in vitro antifungal assay showed that of the tested fungal pathogens, Phytophthora infestans was the fungus most sensitive to the isolated compounds, with MIC values ranging from 6.3 to 400 µg/mL, except for trichotetronine (9) and trichodimerol (10). When tomato plants were treated with the representative compounds (4, 6, 7, and 11), bisvertinolone (6) strongly reduced the development of tomato late blight disease compared to the untreated control. Taken together, our results revealed that the culture filtrate of T. longibrachiatum SFC100166 and its metabolites could be useful sources for the development of new natural agents to control late blight caused by P. infestans.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hammad Abdelwanees Ketta ◽  
Omar Abd El-Raouf Hewedy

Abstract Background Root rot pathogens reported to cause considerable losses in both the quality and productivity of common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). It is an aggressive crop disease with detriment economic influence caused by Fusarium solani and Rhizoctonia solani among other soil-borne fungal pathogens. Destructive plant diseases such as root rot have been managed in the last decades using synthetic pesticides. Main body Seeking of economical and eco-friendly alternatives to combat aggressive soil-borne fungal pathogens that cause significant yield losses is urgently needed. Trichoderma emerged as promising antagonist that inhibits pathogens including those inducing root rot disease. Detailed studies for managing common bean and pea root rot disease using different Trichoderma species (T. harzianum, T. hamatum, T. viride, T. koningii, T. asperellum, T. atroviridae, T. lignorum, T. virens, T. longibrachiatum, T. cerinum, and T. album) were reported both in vitro and in vivo with promotion of plant growth and induction of systemic defense. The wide scale application of selected metabolites produced by Trichoderma spp. to induce host resistance and/or to promote crop yield, may represent a powerful tool for the implementation of integrated pest management strategies. Conclusions Biological management of common bean and pea root rot-inducing pathogens using various species of the Trichoderma fungus might have taken place during the recent years. Trichoderma species and their secondary metabolites are useful in the development of protection against root rot to bestow high-yielding common bean and pea crops.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Armina Morkeliūnė ◽  
Neringa Rasiukevičiūtė ◽  
Lina Šernaitė ◽  
Alma Valiuškaitė

The Colletotrichum spp. is a significant strawberry pathogen causing yield losses of up to 50%. The most common method to control plant diseases is through the use of chemical fungicides. The findings of plants antimicrobial activities, low toxicity, and biodegradability of essential oils (EO), make them suitable for biological protection against fungal pathogens. The aim is to evaluate the inhibition of Colletotrichum acutatum by thyme, sage, and peppermint EO in vitro on detached strawberry leaves and determine EO chemical composition. Our results revealed that the dominant compound of thyme was thymol 41.35%, peppermint: menthone 44.56%, sage: α,β-thujone 34.45%, and camphor: 20.46%. Thyme EO inhibited C. acutatum completely above 200 μL L−1 concentration in vitro. Peppermint and sage EO reduced mycelial growth of C. acutatum. In addition, in vitro, results are promising for biological control. The detached strawberry leaves experiments showed that disease reduction 4 days after inoculation was 15.8% at 1000 μL L−1 of peppermint EO and 5.3% at 800 μL L−1 of thyme compared with control. Our findings could potentially help to manage C. acutatum; however, the detached strawberry leaves assay showed that EO efficacy was relatively low on tested concentrations and should be increased.


2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Amr H. Hashem ◽  
Amer M. Abdelaziz ◽  
Ahmed A. Askar ◽  
Hossam M. Fouda ◽  
Ahmed M. A. Khalil ◽  
...  

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.


2009 ◽  
Vol 3 (2) ◽  
pp. 48-64
Author(s):  
Kadhim M. Ibrahim ◽  
Shaimaa A. Yousir

Several experiments were carried out to study heavy metal tolerance in tissue cultures or whole plants of S. grandiflora., Callus was induced and maintained on modified Murashige and Skoog, 1962 medium (MS) supplemented with (0.5)mg/l benzyl adenine and (2)mg/l 2,4-phenoxy acetic acid . Heavy metals (Cd, Co, Cu, Cr or Zn) were added to the culture medium at different concentrations as contamination agents. In order to asses the effect of these heavy metals on seed germination; seeds were sown in soil contaminated with different concentrations of heavy metals for 3 weeks. Atomic Absorption Spectrophotometer was used for analysis of samples taken from whole plants and callus cultures. Results showed that callus fresh weight decreased with increasing heavy metal concentration in cultural medium. Germination percentages and plant heights increased over time. However, a reduction occurred in these parameters with increasing heavy metal levels. Percentages of metals accumulated in calli were (0.001, 0.011, 0.012 and 0.013%) at (0.0, 0.05, 0.075 and 0.1)mg/l Cd respectively; (0.001, 0.008, 0.016 and 0.006%) at (0.0, 0.1, 0.25 and 0.5)mg/l Co respectively; (0.001, 0.020, 0.034 and 0.015%) at (0.0, 0.075, 0.2 and 0.5)mg/l Cu respectively; (0.001, 0.013, 0.012 and 0.010%) at (0.0, 0.25, 0.4 and 0.5)mg/l Cr respectively and (0.027, 0.051, 0.059 and 0.056%) at (0.0 , 0.75, 1.0 and 1.5)mg/l Zn respectively. Percentages of metals accumulated in whole plants were (0.08, 0.55, 1.11, 0.83 and 0.44%) at (0.0, 1.0, 2.0, 3.0 and 4.0)mg/Kg soil Cd respectively; (0.11, 0.22, 0.55, 0.47 and 0.44%) at (0.0, 15.0, 30.0 45.0 and 60.0)mg/Kg soil Co respectively; (0.01, 0.10, 0.57, 0.58 and 0.72%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cu respectively. (0.08, 0.80, 1.28, 1.31 and 0.88%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cr respectively and (0.06, 1.11, 1.20, 1.83 and 2.22%) at (0.0, 100.0, 200.0, 300.0 and 400.0)mg/Kg soil Zn respectively.


2021 ◽  
Vol 118 (16) ◽  
pp. e2024463118
Author(s):  
Anurag A. Agrawal ◽  
Katalin Böröczky ◽  
Meena Haribal ◽  
Amy P. Hastings ◽  
Ronald A. White ◽  
...  

For highly specialized insect herbivores, plant chemical defenses are often co-opted as cues for oviposition and sequestration. In such interactions, can plants evolve novel defenses, pushing herbivores to trade off benefits of specialization with costs of coping with toxins? We tested how variation in milkweed toxins (cardenolides) impacted monarch butterfly (Danaus plexippus) growth, sequestration, and oviposition when consuming tropical milkweed (Asclepias curassavica), one of two critical host plants worldwide. The most abundant leaf toxin, highly apolar and thiazolidine ring–containing voruscharin, accounted for 40% of leaf cardenolides, negatively predicted caterpillar growth, and was not sequestered. Using whole plants and purified voruscharin, we show that monarch caterpillars convert voruscharin to calotropin and calactin in vivo, imposing a burden on growth. As shown by in vitro experiments, this conversion is facilitated by temperature and alkaline pH. We next employed toxin-target site experiments with isolated cardenolides and the monarch’s neural Na+/K+-ATPase, revealing that voruscharin is highly inhibitory compared with several standards and sequestered cardenolides. The monarch’s typical >50-fold enhanced resistance to cardenolides compared with sensitive animals was absent for voruscharin, suggesting highly specific plant defense. Finally, oviposition was greatest on intermediate cardenolide plants, supporting the notion of a trade-off between benefits and costs of sequestration for this highly specialized herbivore. There is apparently ample opportunity for continued coevolution between monarchs and milkweeds, although the diffuse nature of the interaction, due to migration and interaction with multiple milkweeds, may limit the ability of monarchs to counteradapt.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mark Austin Hanson ◽  
Anna Dostálová ◽  
Camilla Ceroni ◽  
Mickael Poidevin ◽  
Shu Kondo ◽  
...  

Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete most known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking these ten AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.


Sign in / Sign up

Export Citation Format

Share Document