scholarly journals Myogenic Differentiation of Human Myoblasts and Mesenchymal Stromal Stem Cells under GDF11 on Poly-ɛ-Caprolactone-Collagen I-Polyethylene-Nanofibers

Author(s):  
Aijia Cai ◽  
Paul Schneider ◽  
Zeng-Ming Zheng ◽  
Justus P. Beier ◽  
Marcus Himmler ◽  
...  

Abstract Primary myoblasts (Mb) and adipose derived mesenchymal stromal cells (ADSC) can be co-cultured and myogenically differentiated in the process of skeletal muscle tissue engineering. Electrospun composite nanofiber scaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining biocompatibility and stability. Although growth differentiation factor 11 (GDF11) has been proposed as a rejuvenating circulating factor, restoring skeletal muscle function in aging mice, some studies have also described a harming effect of GDF11.Therefore the aim of the study was to analyze the effect of GDF11 on co-cultures of Mb and ADSC on poly-ε-caprolacton (PCL)-collagen I-polyethylene oxide (PEO)-nanofibers.Human Mb were co-cultured with ADSC two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-PEO-nanofibers. Differentiation media were either serum-free with or without GDF11, or serum containing as in a conventional differentiation medium. Cell viability was higher after conventional myogenic differentiation compared to serum-free and serum-free + GDF11 differentiation as was creatine kinase activity. Immunofluorescence staining showed myosin heavy chain expression in all groups after 28 days of differentiation. Gene expression of myosin heavy chain (MYH2) increased after serum-free + GDF11 stimulation compared to serum-free stimulation alone. The results of this study show that PCL-collagen I-PEO-nanofibers represent a suitable matrix for 3D myogenic differentiation of Mb and ADSC. In this context, GDF11 seems to promote myogenic differentiation of Mb and ADSC co-cultures compared to serum-free differentiation without any evidence of a harming effect.

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2232
Author(s):  
Valentina Pallottini ◽  
Mayra Colardo ◽  
Claudia Tonini ◽  
Noemi Martella ◽  
Georgios Strimpakos ◽  
...  

Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.


2000 ◽  
Vol 20 (17) ◽  
pp. 6600-6611 ◽  
Author(s):  
Ulrike Delling ◽  
Jolana Tureckova ◽  
Hae W. Lim ◽  
Leon J. De Windt ◽  
Peter Rotwein ◽  
...  

ABSTRACT The differentiation and maturation of skeletal muscle cells into functional fibers is coordinated largely by inductive signals which act through discrete intracellular signal transduction pathways. Recently, the calcium-activated phosphatase calcineurin (PP2B) and the family of transcription factors known as NFAT have been implicated in the regulation of myocyte hypertrophy and fiber type specificity. Here we present an analysis of the intracellular mechanisms which underlie myocyte differentiation and fiber type specificity due to an insulinlike growth factor 1 (IGF-1)–calcineurin–NFAT signal transduction pathway. We demonstrate that calcineurin enzymatic activity is transiently increased during the initiation of myogenic differentiation in cultured C2C12 cells and that this increase is associated with NFATc3 nuclear translocation. Adenovirus-mediated gene transfer of an activated calcineurin protein (AdCnA) potentiates C2C12 and Sol8 myocyte differentiation, while adenovirus-mediated gene transfer of noncompetitive calcineurin-inhibitory peptides (cain or ΔAKAP79) attenuates differentiation. AdCnA infection was also sufficient to rescue myocyte differentiation in an IGF-depleted myoblast cell line. Using 10T1/2 cells, we demonstrate that MyoD-directed myogenesis is dramatically enhanced by either calcineurin or NFATc3 cotransfection, while a calcineurin inhibitory peptide (cain) blocks differentiation. Enhanced myogenic differentiation directed by calcineurin, but not NFATc3, preferentially specifies slow myosin heavy-chain expression, while enhanced differentiation through mitogen-activated protein kinase kinase 6 (MKK6) promotes fast myosin heavy-chain expression. These data indicate that a signaling pathway involving IGF-calcineurin-NFATc3 enhances myogenic differentiation whereas calcineurin acts through other factors to promote the slow fiber type program.


2009 ◽  
Vol 297 (5) ◽  
pp. C1249-C1262 ◽  
Author(s):  
Paola Galluzzo ◽  
Chiara Rastelli ◽  
Pamela Bulzomi ◽  
Filippo Acconcia ◽  
Valentina Pallottini ◽  
...  

17β-Estradiol (E2) mediates a wide variety of complex biological processes determining the growth and development of reproductive tract as well as nonreproductive tissues of male and female individuals. While E2 effects on the reproductive system, bone, and cardiovascular system are quite well established, less is known about how it affects the physiology of other tissues. Skeletal muscle is a tissue that is expected to be E2 responsive since both isoforms of estrogen receptor (ER-α and ER-β) are expressed. Significant sex-related differences have been described in skeletal muscle, although the role played by E2 and the mechanisms underlying it remain to be determined. Here, we demonstrate that E2 increases the glucose transporter type 4 translocation at membranes as well as the expression of well-known differentiation markers of myogenesis (i.e., myogenin and myosin heavy chain) in rat myoblast cells (L6). These E2-induced effects require rapid extranuclear signals and the presence of ER-α, whereas no contribution of IGF-I receptor has been observed. In particular, ER-α-dependent Akt activation participates in regulating the first step of myogenic differentiation. Moreover, both receptors mediate the E2-induced activation of p38, which, in turn, affects the expression of myogenin and myosin heavy chain. All together, these data indicate that E2 should be included in the list of skeletal muscle trophic factors.


1998 ◽  
Vol 75 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Kotaro Yoshimura ◽  
William M. Kuzon ◽  
Kiyonori Harii

2003 ◽  
Vol 86 (2) ◽  
pp. 201-206 ◽  
Author(s):  
Teet Seene ◽  
Priit Kaasik ◽  
Ando Pehme ◽  
Karin Alev ◽  
Eva-Maria Riso

PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e29082 ◽  
Author(s):  
Sharon L. Rowan ◽  
Karolina Rygiel ◽  
Fennigje M. Purves-Smith ◽  
Nathan M. Solbak ◽  
Douglas M. Turnbull ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document