scholarly journals Identification of Mutation Resistance Coldspots for Targeting the SARS-CoV2 Main Protease

Author(s):  
Navaneethakrishnan Krishnamoorthy ◽  
Khalid Fakhro

Abstract Most attempts to target the novel coronavirus SARS-CoV2 are focusing on the main protease (Mpro) 1-9. However, >19,000 mutations in the Mpro have already been reported 10. The mutations encompassing 282 amino acid positions and these “hotspots” might change the Mpro structure and activity, potentially rendering novel antivirals and vaccines ineffective. Here we identified 24 mutational “coldspots” that have resisted mutation since the virus was first detected. We compared the structure-function relationship of these coldspots with several SARS-CoV2 Mpro X-ray crystal structures. We found that three coldspot residues (Leu141, Phe185 and Gln192) help to form the active site, while six (Gly2, Arg4, Tyr126, Lys137, Leu141 and Leu286) contribute to dimer formation that is required for Mpro activity. The surface of the dimer interface is more resistant to mutations compared to the active site. Interestingly, 16 coldspots are found in conserved patterns when compared with other coronaviruses. Importantly, several conserved coldpots are available on the surface of the active site and at the dimer interface for targeting. The identification and short list of these coldspots offers a new perspective to target the SARS-CoV2 Mpro while avoiding mutation-based drug resistance.

2020 ◽  
Author(s):  
Navaneethakrishnan Krishnamoorthy ◽  
Khalid Fakhro

Abstract Most attempts to target the novel coronavirus SARS-CoV2 are focusing on the main protease (Mpro) 1,2. We already have access to high resolution 3D-structures of the SARS-CoV2 Mpro, which were developed with inhibitors as co-crystals using X-ray crystallography 3-9. However, >19,000 missense mutations in the Mpro have already been reported 10. The mutations encompassing 282 amino acid positions and these “hotspots” might change the Mpro structure and activity, potentially rendering novel antivirals and vaccines ineffective. Here we identified 24 mutational “coldspots” that have resisted mutation since the virus was first detected. We compared the structure-function relationship of these coldspots with several SARS-CoV2 Mpro X-ray crystal structures. We found that three coldspot residues (Leu141, Phe185 and Gln192) help to form the active site, while six (Gly2, Arg4, Tyr126, Lys137, Leu141 and Leu286) contribute to dimer formation that is required for Mpro activity. Importantly, seven coldpots are conserved among other coronaviruses and available on the surface of the active site and at the dimer interface for targeting. The identification and short list of these coldspots offers a new perspective to target the SARS-CoV2 Mpro while avoiding mutation-based drug resistance.


Author(s):  
Linlin Zhang ◽  
Daizong Lin ◽  
Xinyuanyuan Sun ◽  
Katharina Rox ◽  
Rolf Hilgenfeld

AbstractA novel coronavirus has been identified as the causative agent of a massive outbreak of atypical pneumonia originating at Wuhan, Hubei province, China. Involved in the formation of the coronavirus replication complex, the viral main protease (Mpro, also called 3CLpro) represents an attractive target for therapy. We determined the crystal structure of the unliganded Mpro at 1.75 Å resolution and used this structure to guide optimization of a series of alpha-ketoamide inhibitors. The main goal of the optimization efforts was improvement of the pharmacokinetic properties of the compounds. We further describe 1.95- and 2.20-Å crystal structures of the complex between the enzyme and the most potent alpha-ketoamide optimized this way. These structures will form the basis for further development of these compounds to antiviral drugs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alice Douangamath ◽  
Daren Fearon ◽  
Paul Gehrtz ◽  
Tobias Krojer ◽  
Petra Lukacik ◽  
...  

Abstract COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Author(s):  
Navaneethakrishnan Krishnamoorthy

The novel coronavirus SARS-CoV2 (CoV2) emerged in December 2019. This virus has 88% genomic similarity with SARS-CoV (CoV), and both viruses largely depend on their main protease (Mpro) to regulate infection. Mpro thus represents an attractive target for anti-SARS drug design. The CoV and CoV2 Mpro are 97% identical at the sequence level, with 12 variable residues, and their X-ray structures appear similar. We thus structurally analysed how these variable residues affect the intra-molecular interactions between key residues in the CoV2 Mpro active-site. Compared to CoV Mpro, the 12 divergent residues in CoV2 Mpro exhibit modified intra-molecular interaction networks that ultimately restructure the molecular micro-environment. These altered networks also indirectly affect the networks of other active-site residues at the entrance (T26, M49 and Q192) and near the catalytic region (F140, H163, H164, M165 and H172) of the Mpro. This suggest CoV2 indirectly (via neighbours) reshape key molecular networks around the Mpro active-site. It seems that the CoV2 Mpro deceives us with its apparent structurally identical to the CoV Mpro while this viral system accumulates mass mutations (12 variable residues) at key positions. Some of these identified CoV2 Mpro networks at the active-site might guide design of efficient CoV2 Mpro inhibitors.


2021 ◽  
Vol 50 (5) ◽  
pp. 1473-1483
Author(s):  
Fawad Ahmad ◽  
Saima Ikram ◽  
Jamshaid Ahmad ◽  
Irshad ur Rehman ◽  
Saeed Ullah Khattak ◽  
...  

The recent emergence of a novel coronavirus strain (SARS-CoV-2) has stimulated global efforts to identify potential drugs that target proteins expressed by this novel coronavirus. Among these, the main protease of SARS-CoV-2 (3CL-protease (3CLPro), also known as (MPro) is one of the best choices for the scientists to target. 3CLPro is involved in the processing of polyproteins into mature non-structural viral proteins. An X-ray crystallographic structure (PDB ID 6LU7) of this protein was obtained from the PDB database. ChemDiv libraries of ~80,000 antiviral and ~13,000 coronavirus-targeting molecules were screened against the 3D structure of 3CLPro of SARS-CoV-2. We have identified a panel of molecules that showed an activity and potentially block the active site of the SARS-CoV-2 main protease. These molecules can be investigated further to develop effective virus-inhibiting molecules to treat this highly distressing disease, causing extreme unrest across the globe.


Author(s):  
Alice Douangamath ◽  
Daren Fearon ◽  
Paul Gehrtz ◽  
Tobias Krojer ◽  
Petra Lukacik ◽  
...  

SummaryCOVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments was progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


2020 ◽  
Author(s):  
Micael Davi Lima de Oliveira ◽  
Kelson Mota Teixeira de Oliveira

According to the World Health Organisation, until 16 June, 2020, the number of confirmed and notified cases of COVID-19 has already exceeded 7.9 million with approximately 434 thousand deaths worldwide. This research aimed to find repurposing antagonists, that may inhibit the activity of the main protease (Mpro) of the SARS-CoV-2 virus, as well as partially modulate the ACE2 receptors largely found in lung cells, and reduce viral replication by inhibiting Nsp12 RNA polymerase. Docking molecular simulations were performed among a total of 60 structures, most of all, published in the literature against the novel coronavirus. The theoretical results indicated that, in comparative terms, paritaprevir, ivermectin, ledipasvir, and simeprevir, are among the most theoretical promising drugs in remission of symptoms from the disease. Furthermore, also corroborate indinavir to the high modulation in viral receptors. The second group of promising drugs includes remdesivir and azithromycin. The repurposing drugs HCQ and chloroquine were not effective in comparative terms to other drugs, as monotherapies, against SARS-CoV-2 infection.


2020 ◽  
Author(s):  
Agnieszka Wykowska ◽  
Jairo Pérez-Osorio ◽  
Stefan Kopp

This booklet is a collection of the position statements accepted for the HRI’20 conference workshop “Social Cognition for HRI: Exploring the relationship between mindreading and social attunement in human-robot interaction” (Wykowska, Perez-Osorio & Kopp, 2020). Unfortunately, due to the rapid unfolding of the novel coronavirus at the beginning of the present year, the conference and consequently our workshop, were canceled. On the light of these events, we decided to put together the positions statements accepted for the workshop. The contributions collected in these pages highlight the role of attribution of mental states to artificial agents in human-robot interaction, and precisely the quality and presence of social attunement mechanisms that are known to make human interaction smooth, efficient, and robust. These papers also accentuate the importance of the multidisciplinary approach to advance the understanding of the factors and the consequences of social interactions with artificial agents.


The structure of yeast phosphoglycerate mutase determined by X-ray crystallographic and amino acid sequence studies has been interpreted in terms of the chemical, kinetic and mechanistic observations made on this enzyme. There are two histidine residues at the active site, with imidazole groups almost parallel to each other and approximately 0.4 nm apart, positioned close to the 2 and 3 positions of the substrate. The simplest interpretation of the available information suggests that a ping-pong type mechanism operates in which at least one of these histidine residues participates in the phosphoryl transfer reaction. The flexible C-terminal region also plays an important role in the enzymic reaction.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Esraa M. O. A. Ismail ◽  
Shaza W. Shantier ◽  
Mona S. Mohammed ◽  
Hassan H. Musa ◽  
Wadah Osman ◽  
...  

The recent outbreak of the highly contagious coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2 has created a global health crisis with socioeconomic impacts. Although, recently, vaccines have been approved for the prevention of COVID-19, there is still an urgent need for the discovery of more efficacious and safer drugs especially from natural sources. In this study, a number of quinoline and quinazoline alkaloids with antiviral and/or antimalarial activity were virtually screened against three potential targets for the development of drugs against COVID-19. Among seventy-one tested compounds, twenty-three were selected for molecular docking based on their pharmacokinetic and toxicity profiles. The results identified a number of potential inhibitors. Three of them, namely, norquinadoline A, deoxytryptoquivaline, and deoxynortryptoquivaline, showed strong binding to the three targets, SARS-CoV-2 main protease, spike glycoprotein, and human angiotensin-converting enzyme 2. These alkaloids therefore have promise for being further investigated as possible multitarget drugs against COVID-19.


Sign in / Sign up

Export Citation Format

Share Document