scholarly journals A Pan-cancer Analysis of Thioredoxin-interacting Protein as an Immunological and Prognostic Biomarker

Author(s):  
Xuxue Guo ◽  
Mei Huang ◽  
Haonan Zhang ◽  
Qianhui Chen ◽  
Ying Hu ◽  
...  

Abstract BackgroundThe critical role of thioredoxin-interacting protein (TXNIP) in cellular sulfhydryl redox homeostasis and inflammasome activation is already widely known, however, no pan-cancer analysis is currently available. MethodsWe thus first explored the potential roles of TXNIP across thirty-three tumors mainly based on The Cancer Genome Atlas and Gene Expression Omnibus datasets. ResultsTXNIP is lowly expressed in most cancers, and distinct associations exist between TXNIP expression and the prognosis of tumor patients. TXNIP expression was associated with tumor mutational burden, microsatellite instability, mismatch repair genes, tumor infiltrating immune cell abundance as well as cancer-associated fibroblasts. Moreover, ubiquitin mediated proteolysis, protein post-translational modification and other related pathways were involved in the functional mechanisms of TXNIP. ConclusionsOur first pan-cancer study offers a relatively comprehensive understanding of the carcinostatic roles of TXNIP across different tumors. And this molecule may be considered as a potential immunological and prognostic biomarker.

Author(s):  
Qi Zhao ◽  
Junfeng Liu

Objective: Prolyl 4-hydroxylase, alpha polypeptide I (P4HA1), a key enzyme in collagen synthesis, comprises two identical alpha subunits and two beta subunits. However, the immunomodulatory role of P4HA1 in tumor immune microenvironment (TIME) remains unclear. This study aimed to evaluate the prognostic value of P4HA1 in pan-cancer and explore the relationship between P4HA1 expression and TIME.Methods: P4HA1 expression, clinical features, mutations, DNA methylation, copy number alteration, and prognostic value in pan-cancer were investigated using the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data. Pathway enrichment analysis of P4HA1 was performed using R package “clusterProfiler.” The correlation between immune cell infiltration level and P4HA1 expression was analyzed using three sources of immune cell infiltration data, including ImmuCellAI database, TIMER2 database, and a published work.Results: P4HA1 was substantially overexpressed in most cancer types. P4HA1 overexpression was associated with poor survival in patients. Additionally, we discovered that P4HA1 expression was positively associated with infiltration levels of immunosuppressive cells, such as tumor-associated macrophages, cancer-associated fibroblasts, nTregs, and iTregs, and negatively correlated with CD8+ T and NK cells in pan-cancer.Conclusions: Our results highlighted that P4HA1 might serve as a potential prognostic biomarker in pan-cancer. P4HA1 overexpression is indicative of an immunosuppressive microenvironment. P4HA1 may be a potential target of immunotherapy.


2021 ◽  
Author(s):  
Gujie Wu ◽  
Wenmiao Wang ◽  
Zheng Yang ◽  
Qun Xue

Abstract Background ARNTL2 is a member of the PAS superfamily that promotes tumor progression. However, the role of ARNTL2 in lung adenocarcinoma (LUAD) remains unclear. The purpose of our study was to investigate the function of ARNTL2 in LUAD. Methods The expression, clinical features, and prognostic role of ARNTL2 in pan-cancer were evaluated using The Cancer Genome Atlas and Genotype-Tissue Expression data. GSEA and GSVA of ARNTL2 were performed using the R package “clusterProfiler.” The correlation between immune cell infiltration level and ARNTL2 expression was analyzed using two sources of immune cell infiltration data, including the TIMER2 and ImmuCellAI database. Finally,we analyzed the correlation between ARNTL2 and IC50 of 192 drugs. Results ARNTL2 was substantially overexpressed in LUAD and pan-cancer. High ARNTL2 expression predicted poor survival in patients with LUAD. We also found that ARNTL2 expression was positively associated with the infiltration levels of immunosuppressive cells, such as tumor associated macrophages, cancer associated fibroblasts and Tregs. Among the 192 anti-cancer drugs, ARNTL2 expression was positively correlated with IC50 of 114 anti-cancer drugs, such as SB505124, Doramapimod, Nutlin-3a (-), Sabutoclax, AZD5991, PF-4708671, Elephantin, PRIMA-1MET, Sorafenib, Vorinostat, and MK-2206. Conclusions Our results revealed that ARNTL2 is a potential prognostic biomarker in LUAD. An elevated ARNTL2 expression indicates an immunosuppressive microenvironment, and targeted therapies against ARNTL2 have excellent potential.


2018 ◽  
Author(s):  
Yong Yang ◽  
Jianxin Li ◽  
Ting-Li Han ◽  
Xiaobo Zhou ◽  
Hongbo Qi ◽  
...  

AbstractPreeclampsia (PE) development is often associated with placental immune and inflammatory dysregulation, as well as endoplasmic reticulum (ER) stress. However, the mechanisms linking ER stress and inflammatory dysregulation to PE have not been clarified. It has been reported that thioredoxin-interacting protein (TXNIP), which can bind with and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome, plays a critical role in immune regulation. Recent experimental evidence suggests that activated NLRP3 inflammasomes can activate interleukin-1β (IL-1β) production in the placenta of patients with PE. The objective of the current study was to explore if TXNIP plays a critical signaling role linking ER stress with NLRP3 inflammasome activation in PE. We hypothesised that ER stress would induce TXNIP production, which would bind with NLRP3 inflammasomes to activate IL-1β production. HTR8/SVneo cells were subjected to six hours hypoxia followed by six hours reoxygenation (H/R). These cells showed a higher protein level of NLRP3 and IL-1β, as well as a higher enzymatic activity of caspase-1, indicating enhanced inflammatory dysregulation and ER stress. Cells transfected with TXNIP siRNA showed reduced NLRP3 inflammasome activation. Cells treated with 4-phenylbutyric acid, an inhibitor of ER stress, showed a similar result. In addition, the outgrowth of explant with TXNIP lentivirus in H/R or Tunicamycin (inducers of ER stress) was also measured to verify our hypothesis. These findings demonstrated that TXNIP could influence inflammatory dysregulation by mediating ER stress and NLRP3 inflammasome activation in PE. This novel mechanism may further explain the inflammation observed at the maternal-fetal interface, which leads to placental dysfunction in a patient with PE.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhu ◽  
Xinyao Hu ◽  
Yingze Ye ◽  
Zhihong Jian ◽  
Yi Zhong ◽  
...  

Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) localizes to the nucleus and can significantly elevate the nuclear localization of clathrin assembly lymphomedullary leukocythemia gene. Although there is some evidence to support an important action for PIMREG in the occurrence and development of certain cancers, currently no pan-cancer analysis of PIMREG is available. Therefore, we intended to estimate the prognostic predictive value of PIMREG and to explore its potential immune function in 33 cancer types. By using a series of bioinformatics approaches, we extracted and analyzed datasets from Oncomine, The Cancer Genome Atlas, Cancer Cell Lineage Encyclopedia (CCLE) and the Human Protein Atlas (HPA), to explore the underlying carcinogenesis of PIMREG, including relevance of PIMREG to prognosis, microsatellite instability (MSI), tumor mutation burden (TMB), tumor microenvironment (TME) and infiltration of immune cells in various types of cancer. Our findings indicate that PIMREG is highly expressed in at least 24 types of cancer, and is negatively correlated with prognosis in major cancer types. In addition, PIMREG expression was correlated with TMB in 24 cancers and with MSI in 10 cancers. We revealed that PIMREG is co-expressed with genes encoding major histocompatibility complex, immune activation, immune suppression, chemokine and chemokine receptors. We also found that the different roles of PIMREG in the infiltration of different immune cell types in different tumors. PIMREG can potentially influence the etiology or pathogenesis of cancer by acting on immune-related pathways, chemokine signaling pathway, regulation of autophagy, RIG-I like receptor signaling pathway, antigen processing and presentation, FC epsilon RI pathway, complement and coagulation cascades, T cell receptor pathway, NK cell mediated cytotoxicity and other immune-related pathways. Our study suggests that PIMREG can be applied as a prognostic marker in a variety of malignancies because of its role in tumorigenesis and immune infiltration.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kai Wang ◽  
Xingjun Feng ◽  
Lingzhi Zheng ◽  
Zeying Chai ◽  
Junhui Yu ◽  
...  

Background: Transient receptor potential cation channel subfamily V member 4 (TRPV4) has been reported to regulate tumor progression in many tumor types. However, its association with the tumor immune microenvironment remains unclear.Methods: TRPV4 expression was assessed using data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database. The clinical features and prognostic roles of TRPV4 were assessed using TCGA cohort. Gene set enrichment analysis (GSEA) of TRPV4 was conducted using the R package clusterProfiler. We analyzed the association between TRPV4 and immune cell infiltration scores of TCGA samples downloaded from published articles and the TIMER2 database. The IC50 values of 192 anti-cancer drugs were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) database and the correlation analysis was performed.Results: TRPV4 was highly expressed and associated with worse overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) in colon adenocarcinoma (COAD) and ovarian cancer. Furthermore, TRPV4 expression was closely associated with immune regulation-related pathways. Moreover, tumor-associated macrophage (TAM) infiltration levels were positively correlated with TRPV4 expression in TCGA pan-cancer samples. Immunosuppressive genes such as PD-L1, PD-1, CTLA4, LAG3, TIGIT, TGFB1, and TGFBR1 were positively correlated with TRPV4 expression in most tumors. In addition, patients with high expression of TRPV4 might be resistant to the treatment of Cisplatin and Oxaliplatin.Conclusion: Our results suggest that TRPV4 is an oncogene and a prognostic marker in COAD and ovarian cancer. High TRPV4 expression is associated with tumor immunosuppressive status and may contribute to TAM infiltration based on TCGA data from pan-cancer samples. Patients with high expression of TRPV4 might be resistant to the treatment of Cisplatin and Oxaliplatin.


Author(s):  
Lingyue Li ◽  
Yiyu Wang ◽  
Yuan Mou ◽  
Hao Wu ◽  
Ye Qin

Background. Lysine-specific demethylase 1A (KDM1A) is a histone demethylation enzyme and a crucial epigenetic factor for multiple pathological pathways that mediate carcinogenesis and immunogenicity. Although increasing evidence supposes the association between KDM1A and cancers, no systematic multi-omics analysis of KDM1A is available. Methods. We systematically evaluated the KDM1A expression of various cancer and normal tissues and the unique relationship between KDM1A expression and prognosis of cancer cases based on The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. The genetic variations, phosphorylation, and DNA methylation of KDM1A were analyzed via various tools. We further analyzed the correlation of KDM1A expression and fibroblasts and immune cell infiltration score of TCGA samples via TIMER2.0. Results. KDM1A was highly expressed in 17 types of total 33 cancers, while it expressed low levels in only 4 cancers. High KDM1A expression was associated with worse survival status in various cancers. KDM1A expression was positively correlated with the cancer-associated fibroblasts and myeloid-derived suppressor cells infiltration levels in most cancer types. Additionally, KDM1A in most cancer types was negatively correlated with Th1 cell infiltration and positively correlated with Th2 cells. Moreover, spliceosome, cell cycle, and RNA transport pathways were involved in the functional mechanisms of KDM1A via enrichment analysis. Conclusions. Our study describes the epigenetic factor KDM1A as an oncogene and prognostic biomarker. Our findings provide valuable guidance for further analysis of KDM1A function in pathogenesis and potential clinical treatment.


2021 ◽  
Author(s):  
kai wang ◽  
Jun xing Feng ◽  
Zhi ling Zheng ◽  
Ying ze Chai ◽  
Hui jun Yu ◽  
...  

Abstract Background: Transient receptor potential cation channel subfamily V member 4 (TRPV4) has been reported to regulate tumor progression in many tumor types. However, its association with the tumor immune microenvironment remains unclear.Methods: TRPV4 expression was assessed using data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database. The clinical features and prognostic roles of TRPV4 were assessed using TCGA cohort. Gene set enrichment analysis (GSEA) of TRPV4 was conducted using the R package clusterProfiler. We analyzed the association between TRPV4 and immune cell infiltration scores of TCGA samples downloaded from published articles and the TIMER2 database.Results: TRPV4 was highly expressed and associated with worse overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) in colon adenocarcinoma (COAD) and ovarian cancer. Furthermore, TRPV4 expression was closely associated with immune regulation-related pathways. Moreover, tumor-associated macrophage (TAM) infiltration levels were positively correlated with TRPV4 expression in TCGA pan-cancer samples. Immunosuppressive genes such as PD-L1, PD-1, CTLA4, LAG3, TIGIT, TGFB1, and TGFBR1 were positively correlated with TRPV4 expression in most tumors.Conclusions: Our results suggest that TRPV4 is an oncogene and a prognostic marker in COAD and ovarian cancer. High TRPV4 expression is associated with tumor immunosuppressive status and may contribute to TAM infiltration based on TCGA data from pan-cancer samples.


2009 ◽  
Vol 296 (5) ◽  
pp. E1133-E1139 ◽  
Author(s):  
Junqin Chen ◽  
Hyunjoo Cha-Molstad ◽  
Anna Szabo ◽  
Anath Shalev

Cardiomyocyte apoptosis is a critical process in the pathogenesis of ischemic and diabetic cardiomyopathy, but the mechanisms are not fully understood. Thioredoxin-interacting protein (TXNIP) has recently been shown to have deleterious effects in the cardiovascular system and we therefore investigated whether it may also play a role in diabetes-associated cardiomyocyte apoptosis. In fact, TXNIP expression was increased in H9C2 cardiomyocytes incubated at high glucose, and cardiac expression of TXNIP and cleaved caspase-3 were also elevated in vivo in streptozotocin- and obesity-induced diabetic mice. Together, these findings not only suggest that TXNIP is involved in diabetic cardiomyopathy but also that it may represent a novel therapeutic target. Surprisingly, testing putative TXNIP modulators revealed that calcium channel blockers reduce cardiomyocyte TXNIP transcription and protein levels in a dose-dependent manner. Oral administration of verapamil for 3 wk also reduced cardiac TXNIP expression in mice even in the face of severe diabetes, and these reduced TXNIP levels were associated with decreased apoptosis. To determine whether lack of TXNIP can mimic the verapamil-induced decrease in apoptosis, we used TXNIP-deficient HcB-19 mice, harboring a natural nonsense mutation in the TXNIP gene. Interestingly, we found significantly reduced cleaved caspase-3 levels in HcB-19 hearts, suggesting that TXNIP plays a critical role in cardiac apoptosis and that the verapamil effects were mediated by TXNIP reduction. Thus our results suggest that TXNIP reduction is a powerful target to enhance cardiomyocyte survival and that agents such as calcium channel blockers may be useful in trying to achieve this goal and prevent diabetic cardiomyopathy.


2009 ◽  
Vol 11 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Rongbin Zhou ◽  
Aubry Tardivel ◽  
Bernard Thorens ◽  
Inpyo Choi ◽  
Jürg Tschopp

Sign in / Sign up

Export Citation Format

Share Document