TRPV4 is a Prognostic Biomarker That Correlates With the Immunosuppressive Microenvironment and Chemoresistance of Anti-Cancer Drugs

Author(s):  
kai wang ◽  
Jun xing Feng ◽  
Zhi ling Zheng ◽  
Ying ze Chai ◽  
Hui jun Yu ◽  
...  

Abstract Background: Transient receptor potential cation channel subfamily V member 4 (TRPV4) has been reported to regulate tumor progression in many tumor types. However, its association with the tumor immune microenvironment remains unclear.Methods: TRPV4 expression was assessed using data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database. The clinical features and prognostic roles of TRPV4 were assessed using TCGA cohort. Gene set enrichment analysis (GSEA) of TRPV4 was conducted using the R package clusterProfiler. We analyzed the association between TRPV4 and immune cell infiltration scores of TCGA samples downloaded from published articles and the TIMER2 database.Results: TRPV4 was highly expressed and associated with worse overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) in colon adenocarcinoma (COAD) and ovarian cancer. Furthermore, TRPV4 expression was closely associated with immune regulation-related pathways. Moreover, tumor-associated macrophage (TAM) infiltration levels were positively correlated with TRPV4 expression in TCGA pan-cancer samples. Immunosuppressive genes such as PD-L1, PD-1, CTLA4, LAG3, TIGIT, TGFB1, and TGFBR1 were positively correlated with TRPV4 expression in most tumors.Conclusions: Our results suggest that TRPV4 is an oncogene and a prognostic marker in COAD and ovarian cancer. High TRPV4 expression is associated with tumor immunosuppressive status and may contribute to TAM infiltration based on TCGA data from pan-cancer samples.

2021 ◽  
Vol 8 ◽  
Author(s):  
Kai Wang ◽  
Xingjun Feng ◽  
Lingzhi Zheng ◽  
Zeying Chai ◽  
Junhui Yu ◽  
...  

Background: Transient receptor potential cation channel subfamily V member 4 (TRPV4) has been reported to regulate tumor progression in many tumor types. However, its association with the tumor immune microenvironment remains unclear.Methods: TRPV4 expression was assessed using data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database. The clinical features and prognostic roles of TRPV4 were assessed using TCGA cohort. Gene set enrichment analysis (GSEA) of TRPV4 was conducted using the R package clusterProfiler. We analyzed the association between TRPV4 and immune cell infiltration scores of TCGA samples downloaded from published articles and the TIMER2 database. The IC50 values of 192 anti-cancer drugs were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) database and the correlation analysis was performed.Results: TRPV4 was highly expressed and associated with worse overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) in colon adenocarcinoma (COAD) and ovarian cancer. Furthermore, TRPV4 expression was closely associated with immune regulation-related pathways. Moreover, tumor-associated macrophage (TAM) infiltration levels were positively correlated with TRPV4 expression in TCGA pan-cancer samples. Immunosuppressive genes such as PD-L1, PD-1, CTLA4, LAG3, TIGIT, TGFB1, and TGFBR1 were positively correlated with TRPV4 expression in most tumors. In addition, patients with high expression of TRPV4 might be resistant to the treatment of Cisplatin and Oxaliplatin.Conclusion: Our results suggest that TRPV4 is an oncogene and a prognostic marker in COAD and ovarian cancer. High TRPV4 expression is associated with tumor immunosuppressive status and may contribute to TAM infiltration based on TCGA data from pan-cancer samples. Patients with high expression of TRPV4 might be resistant to the treatment of Cisplatin and Oxaliplatin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangming Hou ◽  
Yingjuan Xu ◽  
Dequan Wu

AbstractThe infiltration degree of immune and stromal cells has been shown clinically significant in tumor microenvironment (TME). However, the utility of stromal and immune components in Gastric cancer (GC) has not been investigated in detail. In the present study, ESTIMATE and CIBERSORT algorithms were applied to calculate the immune/stromal scores and the proportion of tumor-infiltrating immune cell (TIC) in GC cohort, including 415 cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were screened by Cox proportional hazard regression analysis and protein–protein interaction (PPI) network construction. Then ADAMTS12 was regarded as one of the most predictive factors. Further analysis showed that ADAMTS12 expression was significantly higher in tumor samples and correlated with poor prognosis. Gene Set Enrichment Analysis (GSEA) indicated that in high ADAMTS12 expression group gene sets were mainly enriched in cancer and immune-related activities. In the low ADAMTS12 expression group, the genes were enriched in the oxidative phosphorylation pathway. CIBERSORT analysis for the proportion of TICs revealed that ADAMTS12 expression was positively correlated with Macrophages M0/M1/M2 and negatively correlated with T cells follicular helper. Therefore, ADAMTS12 might be a tumor promoter and responsible for TME status and tumor energy metabolic conversion.


2021 ◽  
Vol 20 ◽  
pp. 153303382199208
Author(s):  
Shufang Wang ◽  
Xinlong Huo

Background: Estrogen-related receptor alpha (ESRRA) was reported to play an important role in multiple biological processes of neoplastic diseases. The roles of ESRRA in endometrial cancer have not been fully investigated yet. Methods: Expression data and clinicopathological data of patients with uteri corpus endometrial carcinoma (UCEC) were obtained from The Cancer Genome Atlas (TCGA). Comprehensive bioinformatics analysis was performed, including receiver operating characteristics (ROC) curve analysis, Kaplan-Meier survival analysis, gene ontology (GO) enrichment analysis, and Gene Set Enrichment Analysis (GSEA). Immunohistochemistry was used to detect the protein expression level of ESRRA and CCK-8 assay was performed to evaluate the effect of ESRRA on the proliferation ability. Results: A total of 552 UCEC tissues and 35 normal tissues were obtained from the TCGA database. The mRNA and protein expression level of ESRRA was highly elevated in UCEC compared with normal tissues, and was closely associated with poor prognosis. ROC analysis indicated a very high diagnostic value of ESRRA for patients with UCEC. GO and GSEA functional analysis showed that ESRRA might be mainly involved in cellular metabolism processes, in turn, tumorigenesis and progression of UCEC. Knockdown of ESRRA inhibited the proliferation of UCEC cells in vitro. Further immune cell infiltration demonstrated that ESRRA enhanced the infiltration level of neutrophil cell and reduced that of T cell (CD4+ naïve), NK cell, and cancer associated fibroblast (CAF). The alteration of immune microenvironment will greatly help in developing immune checkpoint therapy for UCEC. Conclusions: Our study comprehensively analyzed the expression level, clinical value, and possible mechanisms of action of ESRRA in UCEC. These findings showed that ESRRA might be a potential diagnostic and therapeutic target.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Sihan Chen ◽  
Guodong Cao ◽  
Wei Wu ◽  
Yida Lu ◽  
Xiaobo He ◽  
...  

Abstract Colon adenocarcinoma (COAD) is a malignant gastrointestinal tumor, often occurring in the left colon, which is regulated by glycolysis-related processes. In past studies, multiple genes that influence the prognosis for survival have been discovered through bioinformatics analysis. However, the prediction of disease prognosis using a single gene is not an accurate method. In the present study, a mechanistic model was established to achieve better prediction for the prognosis of COAD. COAD-related data downloaded from The Cancer Genome Atlas (TCGA) were correlated with the glycolysis process using gene set enrichment analysis (GSEA) to determine the glycolysis-related genes that regulate COAD. Using COX regression analysis, glycolysis-related genes associated with the prognosis of COAD were identified, and the genes screened to establish a predictive model. The risk scores of this model were correlated with relevant clinical data to obtain a connection diagram between the model and survival rate, tumor characteristic data, etc. Finally, genes in the model were correlated with cells in the tumor microenvironment, finding that they affected specific immune cells in the model. Seven genes related to glycolysis were identified (PPARGC1A, DLAT, 6PC2, P4HA1, STC2, ANKZF1, and GPC1), which affect the prognosis of patients with COAD and constitute the model for prediction of survival of COAD patients.


2020 ◽  
Author(s):  
Lili Fan ◽  
Han Lei ◽  
Ying Lin ◽  
Zhengwei Zhou ◽  
Guang Shu ◽  
...  

Abstract Background : Ovarian cancer (OC) is a serious tumor disease in gynecology. Many papers have reported that high tumor mutational burden (TMB) can generate many neoantigens to result in a higher degree of tumor immune infiltration, so our study aims to predict the key molecules in OC immunotherapy by combined TMB with immunoactivity-related gene. Method: We divided OC cases into two groups: the low & high TMB group hinged on the somatic mutation data from the Cancer Genome Atlas (TCGA). We also used single-sample gene set enrichment analysis (ssGSEA) scores of immune cell types to conduct unsupervised clustering of OC patients in the TCGA cohort and some of them were defined as the low & high immunity group. Besides, to further understand the function of these genes, we conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, protein-protein interaction network, survival prognosis analysis and immune infiltration analysis. Finally, the effects on prognosis and immunotherapy in OC patients were explored by the Group on Earth Observations verification the patients' responses to immunotherapy. Results: We found that the higher the TMB was associated with the higher OC grades. Moreover, both high TMB and high immunity were significantly correlated with a good prognosis of OC. Then, 14 up-regulated differential expression genes (Up-DEGs) that were closely related to the prognosis of OC patients were screened according to the high TMB group and the high immunity group. Next, pathway analysis revealed that Up-DGEs were mainly involved in immune response and T cell proliferation. Finally, four genes had a good prognosis and were validated in the GEO dataset which included CXCL13, FCRLA, PLA2G2D, and MS4A1. We also identified that four genes had a good prognosis in melanoma patients treated with anti-PD-L1 and anti-CTLA-4 in the TIDE database. Conclusion: High TMB can promote immune cell infiltration and increases immune activity. And our analysis also demonstrated that the higher the TMB, the higher the immune activity, the better the prognosis of OC. Altogether, we found that CXCL13, FCRLA, PLA2G2D, and MS4A1 may be biomarkers for OC immunotherapy. Keywords: ovarian cancer, TMB, immune cells infiltration, survival prognosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ming Gao ◽  
Xinzhuang Wang ◽  
Dayong Han ◽  
Enzhou Lu ◽  
Jian Zhang ◽  
...  

Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system. As biomedicine advances, the researcher has found the development of GBM is closely related to immunity. In this study, we evaluated the GBM tumor immunoreactivity and defined the Immune-High (IH) and Immune-Low (IL) immunophenotypes using transcriptome data from 144 tumors profiled by The Cancer Genome Atlas (TCGA) project based on the single-sample gene set enrichment analysis (ssGSEA) of five immune expression signatures (IFN-γ response, macrophages, lymphocyte infiltration, TGF-β response, and wound healing). Next, we identified six immunophenotype-related long non-coding RNA biomarkers (im-lncRNAs, USP30-AS1, HCP5, PSMB8-AS1, AL133264.2, LINC01684, and LINC01506) by employing a machine learning computational framework combining minimum redundancy maximum relevance algorithm (mRMR) and random forest model. Moreover, the expression level of identified im-lncRNAs was converted into an im-lncScore using the normalized principal component analysis. The im-lncScore showed a promising performance for distinguishing the GBM immunophenotypes with an area under the curve (AUC) of 0.928. Furthermore, the im-lncRNAs were also closely associated with the levels of tumor immune cell infiltration in GBM. In summary, the im-lncRNA signature had important clinical implications for tumor immunophenotyping and guiding immunotherapy in glioblastoma patients in future.


2021 ◽  
Vol 19 (1) ◽  
pp. 169-190
Author(s):  
Peiyuan Li ◽  
◽  
Gangjie Qiao ◽  
Jian Lu ◽  
Wenbin Ji ◽  
...  

<abstract> <p>Plasmacytoma variant translocation 1 (PVT1) is involved in multiple signaling pathways and plays an important regulatory role in a variety of malignant tumors. However, its role in the prognosis and immune invasion of bladder urothelial carcinoma (BLCA) remains unclear. This study investigated the expression of PVT1 in tumor tissue and its relationship with immune invasion, and determined its prognostic role in patients with BLCA. Patients were identified from the cancer genome atlas (TCGA). The enrichment pathway and function of PVT1 were explained by gene ontology (GO) term analysis, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA), and the degree of immune cell infiltration was quantified. Kaplan–Meier analysis and Cox regression were used to analyze the correlation between PVT1 and survival rate. PVT1-high BLCA patients had a lower 10-year disease-specific survival (DSS P &lt; 0.05) and overall survival (OS P &lt; 0.05). Multivariate Cox regression analysis showed that PVT1 (high vs. low) (P = 0.004) was an independent prognostic factor. A nomogram was used to predict the effect of PVT1 on the prognosis. PVT1 plays an important role in the progression and prognosis of BLCA and can be used as a medium biomarker to predict survival after cystectomy.</p> </abstract>


2021 ◽  
Vol 8 ◽  
Author(s):  
Junbo Xiao ◽  
Yajun Liu ◽  
Jun Yi ◽  
Xiaowei Liu

Accumulated evidence supports that long non-coding RNAs (lncRNAs) are involved significantly in the development of human cancers. Enhancer RNAs (eRNAs), a subtype of lncRNAs, have recently attracted much attention about their roles in carcinogenesis. Colon adenocarcinoma is one of the most commonly diagnosed tumors with unfavorable prognosis. It highlights the great significance of screening and identifying novel biomarkers. More importantly, it remains to be elucidated with respect to the function of eRNAs in colon adenocarcinoma, as is in pan-cancers. The expression of LINC02257 was determined based on the data obtained from The Cancer Genome Atlas (TCGA). Further evaluation was performed on the basis of the following analyses: clinicopathology and survival analysis, gene ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as multi-omics immunotherapy-related analysis and co-expression analysis. The statistical analysis was conducted in R software, and immune cell infiltration of LINC02257 expression in cancers was investigated by using the CIBERSORT algorithm. By large-scale data mining, our study highlighted that a total of 39 eRNA genes were associated with colon adenocarcinoma prognosis, among which 25 eRNAs showed significant associations with their predicted target genes. LINC02257 was identified as the most significant survival-associated eRNA, with DUSP10 as its target gene. Besides, the high expression of LINC02257 in colon adenocarcinoma was more vulnerable to unfavorable prognosis and correlated with various clinical characteristics. GO and KEGG analyses revealed that LINC02257 was closely correlated with extracellular matrix organization via the PI3K-Akt signaling pathway. Besides, LINC02257 expression correlated with a multi-omics analysis of 33 cancer types, such as survival analysis [overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI)] and immunotherapy-related analysis [tumor microenvironment (TME), tumor mutational burden (TMB), and microsatellite instability (MSI)]. Finally, we investigated the co-expression genes of LINC02257 and its potential signaling pathways across different cancer types. LINC02257 is screened and can function as an independent prognostic biomarker through the PI3K-Akt signaling pathway for colon adenocarcinoma. Simultaneously, LINC02257 may be a multifaceted and significant immunotherapy-related eRNA in different cancers.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Erna Guo ◽  
Haotang Wei ◽  
Xiwen Liao ◽  
Liuyu Wu ◽  
Xiaoyun Zeng

Abstract Background Colon adenocarcinoma (COAD) is the most common form of colon cancer. The glutathione S-transferase Mu (GSTM) gene belongs to the GST gene family, which functions in cell metabolism and detoxification. The relationship between GSTM and COAD and the underlying mechanism remain unknown. Methods Data extracted from The Cancer Genome Atlas included mRNA expression and clinical information such as gender, age, and tumor stage. Prognostic values of GSTM genes were identified by survival analysis. Function and mechanism of prognostic GSTM genes were identified by gene set enrichment analysis. A nomogram was used to predict the contribution of risk factors to the outcome of COAD patients. Results Low expression of GSTM1 and GSTM2 was related to favorable OS (adjusted P = 0.006, adjusted HR = 0.559, 95% CI = 0.367–0.849 and adjusted P = 0.002, adjusted HR = 0.519, 95% CI = 0.342–0.790, respectively) after adjusting for tumor stage. Enrichment analysis also showed that genes involved were related to cell cycle, metabolism, and detoxification processes, as well as the Wnt signaling and NF-κB pathways. Conclusions In conclusion, low expression of GSTM1 and GSTM2 were significantly associated with favorable prognosis in COAD. These two genes may serve as potential biomarkers of COAD prognosis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingyi Chen ◽  
Yuxuan Song ◽  
Mei Li ◽  
Yu Zhang ◽  
Tingru Lin ◽  
...  

Abstract Background Competing endogenous RNA (ceRNA) represents a class of RNAs (e.g., long noncoding RNAs [lncRNAs]) with microRNA (miRNA) binding sites, which can competitively bind miRNA and inhibit its regulation of target genes. Increasing evidence has underscored the involvement of dysregulated ceRNA networks in the occurrence and progression of colorectal cancer (CRC). The purpose of this study was to construct a ceRNA network related to the prognosis of CRC and further explore the potential mechanisms that affect this prognosis. Methods RNA-Seq and miRNA-Seq data from The Cancer Genome Atlas (TCGA) were used to identify differentially expressed lncRNAs (DElncRNAs), microRNAs (DEmiRNAs), and mRNAs (DEmRNAs), and a prognosis-related ceRNA network was constructed based on DElncRNA survival analysis. Subsequently, pathway enrichment, Pearson correlation, and Gene Set Enrichment Analysis (GSEA) were performed to determine the function of the genes in the ceRNA network. Gene Expression Profiling Interactive Analysis (GEPIA) and immunohistochemistry (IHC) were also used to validate differential gene expression. Finally, the correlation between lncRNA and immune cell infiltration in the tumor microenvironment was evaluated based on the CIBERSORT algorithm. Results A prognostic ceRNA network was constructed with eleven key survival-related DElncRNAs (MIR4435-2HG, NKILA, AFAP1-AS1, ELFN1-AS1, AC005520.2, AC245884.8, AL354836.1, AL355987.4, AL591845.1, LINC02038, and AC104823.1), 54 DEmiRNAs, and 308 DEmRNAs. The MIR4435-2HG- and ELFN1-AS1-associated ceRNA subnetworks affected and regulated the expression of the COL5A2, LOX, OSBPL3, PLAU, VCAN, SRM, and E2F1 target genes and were found to be related to prognosis and tumor-infiltrating immune cell types. Conclusions MIR4435-2HG and ELFN1-AS1 are associated with prognosis and tumor-infiltrating immune cell types and could represent potential prognostic biomarkers or therapeutic targets in colorectal carcinoma.


Sign in / Sign up

Export Citation Format

Share Document