scholarly journals Prognostic Value of Muscle Mass Measured via Brain Computed Tomography in Neurocritically Ill Patients

Author(s):  
Yun Im Lee ◽  
Ryoung-Eun Ko ◽  
Joonghyun Ahn ◽  
Keumhee Carriere ◽  
Jeong-Am Ryu

Abstract We investigated whether skeletal muscle mass estimated via brain computed tomography (CT) can be used to predict neurological outcomes in neurocritically ill patients. Adult patients who were admitted to the neurosurgical intensive care unit (ICU) from January 2010 to September 2019 were eligible. We included patients who were hospitalized in the neurosurgical ICU for more than 7 days. Cross-sectional areas of paravertebral muscle at the first cervical vertebra level (C1-CSA) and temporalis muscle thickness (TMT) on brain CT were measured to evaluate skeletal muscle mass. Primary outcome was Glasgow Outcome Scale score at 3 months. Change of C1-CSA (adjusted odds ratio [OR]: 1.36, 95% confidence interval [CI]: 1.054–1.761) and change of TMT (adjusted OR: 1.27, 95% CI: 1.028–1.576) were significantly associated with poor neurological outcome (Hosmer–Lemeshow test, Chi-square = 11.4, df = 8, p = 0.178) with areas under the curve of 0.803 (95% CI 0.740–0.866) using 10-fold cross validation method. Especially, risk of poor neurologic outcome was proportional to changes of C1-CSA and TMT. In this study, the follow-up skeletal muscle mass at first week from ICU admission, based on changes in C1-CSA and TMT, was associated with neurological prognosis in neurocritically ill patients.

2020 ◽  
Author(s):  
Yun Im Lee ◽  
Ryoung-Eun Ko ◽  
Joonghyun Ahn ◽  
Keumhee C. Carriere ◽  
Jeong-Am Ryu

Abstract Background To investigate whether skeletal muscle mass estimated via brain computed tomography (CT) can be used to predict neurological outcomes in neurocritically ill patients. Methods This is a retrospective, observational study. Adult patients who were admitted to the neurosurgical intensive care unit (ICU) in tertiary hospital from January 2010 to September 2019 were eligible. We included patients who were hospitalized in the neurosurgical ICU for more than 7 days. Cross-sectional areas of paravertebral muscle at the first cervical vertebra level (C1-CSA) and temporalis muscle thickness (TMT) on brain CT were measured to evaluate skeletal muscle mass. Primary outcome was Glasgow Outcome Scale score at 3 months. Results Among 189 patients, 167 (88.4%) survived until discharge from the hospital. Of these survivors, 81 (42.9%) patients had favorable neurologic outcomes. Initial TMT values and follow-up TMT values were higher in patients with favorable neurologic outcome compared to those with poor neurological outcome (p = 0.003 and p = 0.001, respectively). Initial the C1-CSA/body surface area was greater in patients with poor neurological outcome than in those with favorable outcome (p = 0.029). In multivariable analysis, age (adjusted odds ratio [OR]: 2.05, 95% confidence interval [CI]: 1.543–2.724), BMI (adjusted OR: 0.74, 95% CI: 0.638–0.849), use of mannitol (adjusted OR: 27.45, 95% CI: 4.833–155.860), change of C1-CSA (adjusted OR: 1.36, 95% CI: 1.054–1.761), and change of TMT (adjusted OR: 1.27, 95% CI: 1.028–1.576) were significantly associated with poor neurological outcome (Hosmer–Lemeshow test, Chi-square = 11.4, df = 8, p = 0.178) with the areas under curve of 0.803 (95% CI 0.740–0.866) using 10-fold cross validation method. Especially, the risk of poor neurologic outcome was proportional to changes of C1-CSA and TMT. Conclusions In this study, the follow-up skeletal muscle mass at first week from ICU admission, based on changes in C1-CSA and TMT, was associated with neurological prognosis in neurocritically ill patients. Eventually, brain CT-measured sarcopenia may be helpful in predicting poor neurological outcomes in these patients.


2018 ◽  
Vol 37 ◽  
pp. S37
Author(s):  
B.T. Muresan ◽  
C. Sánchez Juan ◽  
A. Artero ◽  
A. Montoro ◽  
G. Sanchz Jordá ◽  
...  

Author(s):  
Maria Casasayas ◽  
Jacinto García-Lorenzo ◽  
Beatriz Gómez-Ansón ◽  
Victoria Medina ◽  
Alejandro Fernández ◽  
...  

Abstract Purpose Skeletal muscle mass (SMM) loss and sarcopenia have been identified as risk factors for postoperative complications. The aim of this study was to investigate the relationship between pharyngocutaneous fistula (PCF) formation after total laryngectomy (TL) and SMM assessed from a computed tomography image of the 3rd cervical vertebra (C3). Methods Retrospective study of 86 male patients who underwent TL between 2013 and 2019 in a single institution. We excluded women from the analysis due to our limited sample. SMM was determined from cross-sectional muscle area (CSMA) measurement at C3 using the ImageJ software. Results were compared with those for the skeletal muscle mass index (SMMI) calculated from the estimated measure at 3rd lumbar vertebra (L3). Results PCF formation occurred in 21/86 patients. According to the CSMA at a C3 cut-off of 35.5cm2, of 18 patients (20.9%) with low SMM, 9 developed PCFs (50.0%). Among patients with normal SMM (n = 68, 79.1%), 12 developed PCFs (17.6%). The CSMA at C3 was the only variable significantly associated with PCF risk, which was 4.7 times greater in patients with low SMM (p = 0.007). Sarcopenia was more frequent in underweight patients (p = 0.0001), patients undergoing extended surgeries (p = 0.003), or presenting preoperative anaemia (p = 0.009) or hypoalbuminemia (p = 0.027). Conclusion Measuring the CSMA at C3 obtained results equivalent to those obtained by calculating the SMMI at L3, suggesting that direct SMM assessment from C3 is a useful approach to evaluating PCF formation risk after TL.


2021 ◽  
pp. 1-49
Author(s):  
Belinda Vangelov ◽  
Judy Bauer ◽  
Damian Kotevski ◽  
Robert I. Smee

ABSTRACT Body composition measurement using diagnostic computed tomography (CT) scans has emerged as a method to assess sarcopenia (low muscle mass) in oncology patients. Assessment of skeletal muscle mass (SMM) using the cross-sectional area (CSA) of a single vertebral slice (at lumbar L3) in a CT scan is correlated to whole body skeletal muscle volume. This method is used to assess CT-defined sarcopenia in patients with cancer, with low SMM effecting outcomes. However, as diagnostic scans are based on tumour location, not all include L3. We evaluated the evidence for the use of alternate vertebral CT slices for SMM evaluation when L3 is not available. Five electronic databases were searched from Jan 1996-April 2020 for studies using CT scan vertebral slices above L3 for SM measurement in adults with cancer (solid tumours). Validation with whole body SMM, rationale for the chosen slice, and sarcopenia cut-off values were investigated. Thirty-two studies were included, all retrospective and cross-sectional in design. Cervical, thoracic, and lumbar slices were used (from C3-L1), with no validation of whole body SMM using CT scans. Alternate slices were used in lung, and head and neck cancer patients. Sarcopenia cut-off values were reported in 75% of studies, with differing methods, with or without sex-specific values, and a lack of consensus. Current evidence is inadequate to provide definitive recommendations for alternate vertebral slice use for SMM evaluation in cancer patients. Variation in sarcopenia cut-offs warrants more robust investigation, in order for risk stratification to be applied to all patients with cancer.


2020 ◽  
pp. 1-1
Author(s):  
Y. Matsui

Thank you for your letter (1) concerning our article entitled, «Association of muscle strength and gait speed with cross-sectional muscle area determined by mid-thigh computed tomography—a comparison with skeletal muscle mass measured by dual-energy X-ray absorptiometry» (2). We are pleased to know that you were interested in our work and have recognized the clinical relevance of measuring the quadriceps muscle mass for estimating the motor function.


2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Yun Im Lee ◽  
Ryoung-Eun Ko ◽  
Joonghyun Ahn ◽  
Keumhee C. Carriere ◽  
Jeong-Am Ryu

This study aimed to investigate whether skeletal muscle mass estimated via brain computed tomography (CT) could predict neurological outcomes in neurocritically ill patients. This is a retrospective, single-center study. Adult patients admitted to the neurosurgical intensive care unit (ICU) from January 2010 to September 2019 were eligible. Cross-sectional areas of paravertebral muscles at the first cervical vertebra level (C1-CSA) and temporalis muscle thickness (TMT) on brain CT were measured to evaluate skeletal muscle mass. The primary outcome was the Glasgow Outcome Scale score at 3 months. Among 189 patients, 81 (42.9%) patients had favorable neurologic outcomes. Initial and follow-up TMT values were higher in patients with favorable neurologic outcomes compared to those with poor outcomes (p = 0.003 and p = 0.001, respectively). The initial C1-CSA/body surface area was greater in patients with poor neurological outcomes than in those with favorable outcomes (p = 0.029). In multivariable analysis, changes of C1-CSA and TMT were significantly associated with poor neurological outcomes. The risk of poor neurologic outcome was especially proportional to changes of C1-CSA and TMT. The follow-up skeletal muscle mass measured via brain CT at the first week from ICU admission may help predict poor neurological outcomes in neurocritically ill patients.


2017 ◽  
Vol 29 (9) ◽  
pp. 1644-1648 ◽  
Author(s):  
Akio Morimoto ◽  
Tadashi Suga ◽  
Nobuaki Tottori ◽  
Michio Wachi ◽  
Jun Misaki ◽  
...  

2016 ◽  
Vol 41 (6) ◽  
pp. 611-617 ◽  
Author(s):  
Jameason D. Cameron ◽  
Ronald J. Sigal ◽  
Glen P. Kenny ◽  
Angela S. Alberga ◽  
Denis Prud’homme ◽  
...  

There has been renewed interest in examining the relationship between specific components of energy expenditure and the overall influence on energy intake (EI). The purpose of this cross-sectional analysis was to determine the strongest metabolic and anthropometric predictors of EI. It was hypothesized that resting metabolic rate (RMR) and skeletal muscle mass would be the strongest predictors of EI in a sample of overweight and obese adolescents. 304 post-pubertal adolescents (91 boys, 213 girls) aged 16.1 (±1.4) years with body mass index at or above the 95th percentile for age and sex OR at or above the 85th percentile plus an additional diabetes risk factor were measured for body weight, RMR (kcal/day) by indirect calorimetry, body composition by magnetic resonance imaging (fat free mass (FFM), skeletal muscle mass, fat mass (FM), and percentage body fat), and EI (kcal/day) using 3 day food records. Body weight, RMR, FFM, skeletal muscle mass, and FM were all significantly correlated with EI (p < 0.005). After adjusting the model for age, sex, height, and physical activity, only FFM (β = 21.9, p = 0.007) and skeletal muscle mass (β = 25.8, p = 0.02) remained as significant predictors of EI. FFM and skeletal muscle mass also predicted dietary protein and fat intake (p < 0.05), but not carbohydrate intake. In conclusion, with skeletal muscle mass being the best predictor of EI, our results support the hypothesis that the magnitude of the body’s lean tissue is related to absolute levels of EI in a sample of inactive adolescents with obesity.


Sign in / Sign up

Export Citation Format

Share Document