scholarly journals Transcriptome analysis of messenger RNA and long noncoding RNA related to different developmental stages of tail adipose tissues of sunite sheep

Author(s):  
Xige He ◽  
Rihan Wu ◽  
Yueying Yun ◽  
Xia Qin ◽  
Lu Chen ◽  
...  

Abstract Background: Sunite sheep are a fat-tailed sheep species with a low percentage of intramuscular fat and good quality lean meat, and their tail fat can be used as a source of dietary fat by humans. To understand the potential regulatory mechanism of different growth stages of tail fat in Sunite sheep, we performed high-throughput RNA sequencing to characterize the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles of the sheep tail fat at the age of 6 months, 18 months, and 30 months.Results: A total of 223 differentially expressed genes (DEGs) and 148 differentially expressed lncRNAs were found in the tail fat of 6-, 18-, and 30-month-old sheep (false discovery rate < 0.05, |Fold Change| ≥ 2). Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we found that fat-related DEGs were mainly expressed at 6 months of age, and gradually decreased at 18 and 30 months of age. The target gene prediction analysis shows that most of the lncRNAs target more than 20 mRNAs as their trans-regulators (53 mRNAs at most). Further, we obtained several fat-related differentially-expressed target genes; these target genes interact with different differentially expressed lncRNAs at various ages and play an important role in the development of tail fat. Based on the DEGs and differentially expressed lncRNAs, we established three co-expression networks for each comparison group. Conclusions: Finally, we conclude that the development of the sheep tail fat is more active during the early stage of growth and gradually decreases with the increase in age. The mutual regulation of lncRNAs and mRNAs may play a key role in this complex biological process, and our findings will provide some basic theoretical data for future studies on tail fat development of fat-tailed sheep.

2020 ◽  
Author(s):  
Xiao Ma ◽  
Shuangshuang Cen ◽  
Luming Wang ◽  
Chao Zhang ◽  
Limin Wu ◽  
...  

Abstract Background: The gonad is the major factor affecting animal reproduction. The regulatory mechanism of the expression of protein-coding genes involved in reproduction still remains to be elucidated. Increasing evidence has shown that ncRNAs play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in reproduction have been investigated in some species. However, the regulatory patterns of miRNA and lncRNA in the sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an integrated analysis of miRNA, messenger RNA (mRNA), and lncRNA expression profiles to explore their regulatory patterns in the female ovary and male testis of Chinese soft-shelled turtle, Pelodiscus sinensis.Results: We identified 10 446 mature miRNAs, 20 414 mRNAs and 28 500 lncRNAs in the ovaries and testes, and 633 miRNAs, 11 319 mRNAs, and 10 495 lncRNAs showed differential expression. A total of 2 814 target genes were identified for miRNAs. The predicted target genes of these differentially expressed (DE) miRNAs and lncRNAs included abundant genes related to reproductive regulation. Furthermore, we found that 189 DEmiRNAs and 5 408 DElncRNAs showed sex-specific expression. Of these, 3 DEmiRNAs and 917 DElncRNAs were testis-specific, and 186 DEmiRNAs and 4 491 DElncRNAs were ovary-specific. We further constructed complete endogenous lncRNA-miRNA-mRNA networks using bioinformatics, including 103 DEmiRNAs, 636 DEmRNAs, and 1 622 DElncRNAs. The target genes for the differentially expressed miRNAs and lncRNAs included abundant genes involved in gonadal development, including Wt1, Creb3l2, Gata4, Wnt2, Nr5a1, Hsd17, Igf2r, H2afz, Lin52, Trim71, Zar1, and Jazf1.Conclusions: In animals, miRNA and lncRNA as master regulators regulate reproductive processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs, lncRNAs, and their targets in P. sinensis might be useful for studying the molecular processes involved in sexual reproduction and genome editing to produce higher quality aquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of P. sinensis reproductive traits for aquaculture.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xianpeng Li ◽  
Huaixi Yu ◽  
Feng Xu ◽  
Yifeng Wu ◽  
Jifang Sheng

Background. Far upstream element-binding protein 1 (FUBP1) is reported to be involved in cancer development by regulating the transcription of c-myc gene through binding to far upstream element. Highly expressed FUBP1 was negatively correlated with survival rate of patients with hepatocellular carcinoma (HCC) and could promote the proliferation of HCC cells. However, the downstream mechanism of FUBP1 has not yet been clearly explained. This study is aimed at identifying the expression profiles of long noncoding RNA (lncRNA) in HCC cells in response to FUBP1 overexpression and at investigating the possible lncRNAs that participated in cell proliferation process regulated by FUBP1. Methods. The overexpression of FUBP1 was mediated by lentiviral infection on 3 different types of HCC cell lines (MHCC97-H, MHCC97-L, and Huh-7). The expression of target genes was detected by quantitative reverse transcription-PCR (RT-PCR) and western blotting assays. Microarray and quantitative RT-PCR were applied to screen the differentially expressed lncRNAs in HCC cells after FUBP1 overexpression. The Cell Counting Kit-8 assay was used to confirm the growth vitality of HCC cells. Results. The growth vitality of HCC cells was significantly increased after lentivirus infection. A total of 12 lncRNAs had the same expression trend in the 3 HCC cell lines in response to FUBP1 overexpression, including 3 upregulated lncRNAs and 9 downregulated lncRNAs. Coexpression analysis of dysregulated lncRNAs-mRNAs network showed that lnc-LYZ-2 was the lncRNA most relevant to FUBP1. Inhibition of lnc-LYZ-2 could significantly relieve the proproliferation effect of FUBP1 on HCC cells, suggesting that lnc-LYZ-2 was partially involved in proproliferation regulation of FUBP1. Conclusions. Our results indicated that FUBP1 induced the abnormal expression of lncRNAs and the FUBP1-lncRNAs coexpression network in HCC cells, which could provide theoretical and experimental basis for FUBP1-lncRNAs network involved in HCC development.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Zhen-Xu Zhou ◽  
Xiao-Ming Chen ◽  
Yu-Qi Zhang ◽  
Liu Peng ◽  
Xiang-Yang Xue ◽  
...  

Abstract The present study investigated the role of abnormally expressed mRNA and long noncoding RNA (lncRNA) in the development of colorectal cancer (CRC). We used lncRNA sequencing to analyze the transcriptome (mRNA and lncRNA) of five pairs of CRC tissues and adjacent normal tissues. The total expression of mRNAs and lncRNAs in each sample was determined using the R package and the gene expression was calculated using normalized FPKM. The structural features and expression of all detected lncRNAs were compared with those of mRNAs. Differentially expressed mRNAs were selected to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The functional analysis of differentially expressed lncRNAs was performed by analyzing the GO and KEGG enrichment of predicted cis-regulated target genes. A total of 18.2 × 108 reads were obtained by sequencing, in which the clean reads reached ≥ 94.67%, with a total of 245.2 G bases. The number of mRNAs and lncRNAs differentially expressed in CRC tissues and normal tissues were 113 and 6, respectively. Further predictive analysis of target genes of lncRNAs revealed that six lncRNA genes had potential cis-regulatory effects on 13 differentially expressed mRNA genes and co-expressed with 53 mRNAs. Up-regulated CTD-2256P15.4 and RP11-229P13.23 were the most important lncRNAs in these CRC tissues and involved in cell proliferation and pathway in cancer. In conclusion, our study provides evidence regarding the mRNA and lncRNA transcription in CRC tissues, as well as new insights into the lncRNAs and mRNAs involved in the development of CRC.


2020 ◽  
Author(s):  
Fang Fang ◽  
He yi ◽  
Xu feng

Abstract Background: To identify the critical type of severe hand-foot-mouth disease (HFMD) in early stage, long noncoding ribonucleic acid (LncRNA) microarray was used to screen specific LncRNA and to predictpossible pathogenesis and target genes of HFMD. Methods: Twenty cases of EV71-induced severe HFMD were collected in Children’s Hospital of Chongqing Medical University from September 2015 to September 2016. LncRNA microarray was used to analyze the expression of LncRNA and mRNA in peripheral blood of children between severe type and critical type, and then verify the validity by real-time polymerase chain reaction. Bioinformatic methods were used to investigate differentially expressed mRNA by gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Results: We obtained differentially expressed profiles of LncRNA and mRNA from peripheral blood of children with EV71-induced severe HFMD, and the number of LncRNA was 1949, the total mRNA profiles were 1422. GO analysis found that differentially expressed mRNAs were involved in the processes of immune response, immune defense, nucleic acid metabolism, and protein and molecule binding. KEGG analysis revealed that the differentially expressed mRNAs were involved in the p53 signaling pathway, NOD-like receptor signaling pathway, osteoblast differentiation, and so on. The target gene SLPI was closely related to the critical type of severe HFMD by cis/trans target gene prediction, and the pathogenic processes was regulated by LncRNA NR_038337. Conclusion: Since differentially expressed LncRNAs and mRNAs are present in severe HFMD, our findings provide a new method to explore the pathogenesis of the critical type of severe HFMD, andfurther study on specific LncRNA and target genes in critical type has great significance for diagnosis and treatment of severe HFMD. Keywords: Long noncoding RNA; Enterovirus 71; Severe hand-foot-mouth disease; Target gene Trial registration:ChiCTR-DCD-15007192.Registered 8 October,2015, http://www.chictr.org.cn/ ChiCTR-DCD-15007192


2020 ◽  
Author(s):  
Xiao Ma ◽  
Shuangshuang Cen ◽  
Luming Wang ◽  
Chao Zhang ◽  
Limin Wu ◽  
...  

Abstract Background: The gonad is the major factor affecting animal reproduction. The regulatory mechanism of the expression of protein-coding genes involved in reproduction still remains to be elucidated. Increasing evidence has shown that ncRNAs play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in reproduction have been investigated in some species. However, the regulatory patterns of miRNA and lncRNA in the sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an integrated analysis of miRNA, messenger RNA (mRNA), and lncRNA expression profiles to explore their regulatory patterns in the female ovary and male testis of Pelodiscus sinensis.Results: We identified 10 446 mature miRNAs, 20 414 mRNAs and 28 500 lncRNAs in the ovaries and testes, and 633 miRNAs, 11 319 mRNAs, and 10 495 lncRNAs showed differential expression. A total of 2 814 target genes were identified for miRNAs. The predicted target genes of these differentially expressed (DE) miRNAs and lncRNAs included abundant genes related to reproductive regulation. Furthermore, we found that 189 DEmiRNAs and 5 408 DElncRNAs showed sex-specific expression. Of these, 3 DEmiRNAs and 917 DElncRNAs were testis-specific, and 186 DEmiRNAs and 4 491 DElncRNAs were ovary-specific. We further constructed complete endogenous lncRNA-miRNA-mRNA networks using bioinformatics, including 103 DEmiRNAs, 636 DEmRNAs, and 1 622 DElncRNAs. The target genes for the differentially expressed miRNAs and lncRNAs included abundant genes involved in gonadal development, including Wt1, Creb3l2, Gata4, Wnt2, Nr5a1, Hsd17, Igf2r, H2afz, Lin52, Trim71, Zar1, and Jazf1.Conclusions: In animals, miRNA and lncRNA as master regulators regulate reproductive processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs, lncRNAs, and their targets in P. sinensis might be useful for studying the molecular processes involved in sexual reproduction and genome editing to produce higher quality aquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of P. sinensis reproductive traits for aquaculture.


2020 ◽  
Author(s):  
Xiao Ma ◽  
Shuangshuang Cen ◽  
Luming Wang ◽  
Chao Zhang ◽  
Limin Wu ◽  
...  

Abstract Background: The gonad is the major factor affecting animal reproduction. The regulatory mechanism of the expression of protein-coding genes involved in reproduction still remains to be elucidated. Increasing evidence has shown that ncRNAs play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in reproduction have been investigated in some species. However, the regulatory patterns of miRNA and lncRNA in the sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an integrated analysis of miRNA, messenger RNA (mRNA), and lncRNA expression profiles to explore their regulatory patterns in the female ovary and male testis of Pelodiscus sinensis.Results: We identified 10 446 mature miRNAs, 20 414 mRNAs and 28 500 lncRNAs in the ovaries and testes, and 633 miRNAs, 11 319 mRNAs, and 10 495 lncRNAs showed differential expression. A total of 2 814 target genes were identified for miRNAs. The predicted target genes of these differentially expressed (DE) miRNAs and lncRNAs included abundant genes related to reproductive regulation. Furthermore, we found that 189 DEmiRNAs and 5 408 DElncRNAs showed sex-specific expression. Of these, 3 DEmiRNAs and 917 DElncRNAs were testis-specific, and 186 DEmiRNAs and 4 491 DElncRNAs were ovary-specific. We further constructed complete endogenous lncRNA-miRNA-mRNA networks using bioinformatics, including 103 DEmiRNAs, 636 DEmRNAs, and 1 622 DElncRNAs. The target genes for the differentially expressed miRNAs and lncRNAs included abundant genes involved in gonadal development, including Wt1, Creb3l2, Gata4, Wnt2, Nr5a1, Hsd17, Igf2r, H2afz, Lin52, Trim71, Zar1, and Jazf1.Conclusions: In animals, miRNA and lncRNA as master regulators regulate reproductive processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs, lncRNAs, and their targets in P. sinensis might be useful for studying the molecular processes involved in sexual reproduction and genome editing to produce higher quality aquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of P. sinensis reproductive traits for aquaculture.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Tao Liu ◽  
Guoru Zhang ◽  
Yaling Wang ◽  
Mingyue Rao ◽  
Yang Zhang ◽  
...  

Background. Circular RNA (circRNA) is a noncoding RNA that forms a closed-loop structure, and its abnormal expression may cause disease. We aimed to find potential network for circRNA-related competitive endogenous RNA (ceRNA) in atrial fibrillation (AF). Methods. The circRNA, miRNA, and mRNA expression profiles in the heart tissue from AF patients were retrieved from the Gene Expression Omnibus database and analyzed comprehensively. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified, followed by the establishment of DEcircRNA-DEmiRNA-DEmRNA regulatory network. Functional annotation analysis of host gene of DEcircRNAs and DEmRNAs in ceRNA regulatory network was performed. In vitro experiment and electronic validation were used to validate the expression of DEcircRNAs, DEmiRNAs, and DEmRNAs. Results. A total of 1611 DEcircRNAs, 51 DEmiRNAs, and 1250 DEmRNAs were identified in AF. The DEcircRNA-DEmiRNA-DEmRNA network contained 62 circRNAs, 14 miRNAs, and 728 mRNAs. Among which, two ceRNA regulatory pairs of hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 were identified. In addition, six miRNA-mRNA regulatory pairs including hsa-miR-34c-5p-INMT, hsa-miR-1253-DDIT4L, hsa-miR-508-5p-SMOC2, hsa-miR-943-ACTA1, hsa-miR-338-3p-WIPI1, and hsa-miR-199a-3p-RAP1GAP2 were also obtained. MTOR was a significantly enriched signaling pathway of host gene of DEcircRNAs. In addition, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy were remarkably enriched signaling pathways of DEmRNAs in DEcircRNA-DEmiRNA-DEmRNA regulatory network. The expression validation of hsa-circRNA-402565, hsa-miR-34c-5p, hsa-miR-188-5p, SPON1, DDIT4L, SMOC2, and WIPI1 was consistent with the integrated analysis. Conclusion. We speculated that hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 interaction pairs may be involved in AF.


2019 ◽  
Author(s):  
Xiao Ma ◽  
Shuangshuang Cen ◽  
Luming Wang ◽  
Chao Zhang ◽  
Limin Wu ◽  
...  

Abstract Background: The gonad is the major factor affecting animal reproduction. The regulatory mechanism of the expression of protein-coding genes involved in reproduction still remains to be elucidated. Increasing evidence has shown that ncRNAs play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in reproduction have been investigated in some species. However, the regulatory patterns of miRNA and lncRNA in the sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an integrated analysis of miRNA, messenger RNA (mRNA), and lncRNA expression profiles to explore their regulatory patterns in the female ovary and male testis of the soft-shelled turtle, Pelodiscus sinensis. Results: We identified 10 446 mature miRNAs, 20 414 mRNAs and 28 500 lncRNAs in the ovaries and testes, and 633 miRNAs, 11 319 mRNAs, and 10 495 lncRNAs showed different expression. A total of 2 814 target genes were identified for miRNAs. The predicted target genes of these differentially expressed (DE) miRNAs and lncRNAs included abundant genes related to reproductive regulation. Furthermore, we found that 189 DE miRNAs and 5 408 DElncRNAs showed sex-specific expression. Of these, 3 DEmiRNAs and 917 DElncRNAs were testis specific and 186 DEmiRNAs and 4 491 DElncRNAs were ovary specific. We further constructed compete endogenous lncRNA-miRNA-mRNA networks using bioinformatics, including 103 DEmiRNAs, 636 DEmRNAs, and 1 622 DElncRNAs. The target genes for the differentially expressed miRNAs and lncRNAs included abundant genes involved in gonadal development, including Wt1, Creb3l2, Gata4, Wnt2, Nr5a1, Hsd17, Igf2r, H2afz, Lin52, Trim71, Zar1, and Jazf1. Conclusions: In animals, miRNA and lncRNA as master regulators regulate reproductive processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs, lncRNAs, and their targets in P. sinensis might be useful for studying the molecular processes involved in sexual reproduction and genome editing to produce higher quality aquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of P. sinensis reproductive traits for aquaculture.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Meili Zheng ◽  
Lei Zhao ◽  
Xinchun Yang

The expression profile of long noncoding RNA (lncRNA) in human epicardial adipose tissue (EAT) has not been widely studied. In the present study, we performed RNA sequencing to analyze the expression profiles of lncRNA and mRNA in EAT in coronary artery disease (CAD) patients with and without heart failure (HF). Our results showed RNA sequencing disclosed 35673 mRNA and 11087 lncRNA corresponding to 15554 genes in EAT in total, while 30 differentially expressed lncRNAs (17 upregulated and 13 downregulated) and 278 differentially expressed mRNAs (129 upregulated and 149 downregulated) were discriminated between CAD patients with and without HF (P<0.05; fold change>2); lncRNA ENST00000610659 drew specific attention for it was the top upregulated lncRNA with highest fold change and corresponded to UNC93B1 gene, which was proved to be related to HF and encoded UNC93B1 protein regulating toll-like receptor signaling, and both of them significantly increased in HF patients in qRT-PCR validation; the top significant upregulated enriched GO terms and KEGG pathway analysis were regulation of lymphocyte activation (GO:0051249) and T cell receptor signaling pathway (hsa04660), respectively. The current findings support the fact that EAT lncRNAs are involved in the inflammatory response leading to the development of HF.


Sign in / Sign up

Export Citation Format

Share Document