scholarly journals Sec3 Exocyst Component Knockdown Inhibits Axonal Formation and Cortical Neuronal Migration During Brain Cortex Development

Author(s):  
Florentyna Bustos Plonka ◽  
Lucas Sosa ◽  
Santiago Quiroga

Abstract During neuronal development cell polarization is of vital importance. The establishment of polarity necessitates initial axonal outgrowth in concomitance with the addition of new membrane to the axon’s plasmalemma. Axolemmal expansion occurs by exocytosis of plasmalemmal precursor vesicles primarily at the neuronal growth cone membrane. The multiprotein exocyst complex drives spatial location and specificity of vesicle fusion at plasma membrane. However, the specific participation of its different proteins on neuronal differentiation has not been fully established. In the present work we analyzed the role of Sec3, a prominent exocyst complex protein on neuronal differentiation. Using mice hipocampal primary cultures we determined that Sec3 is expressed in neurons at early stages prior to neuronal polarization. Furthermore, we determined that silencing of Sec3 in mice hippocampal neurons in culture precluded polarization. Moreover, using in utero electroporation experiments, we determined that Sec3 knockdown affected cortical neurons migration and morphology during neocortex formation. Our results demonstrate that the exocyst complex protein Sec3 plays an important role in axon formation in neuronal differentiation and the migration of neuronal progenitors during cortex development.

2010 ◽  
Vol 19 (18) ◽  
pp. 3642-3651 ◽  
Author(s):  
Maria M. Alves ◽  
Grzegorz Burzynski ◽  
Jean-Marie Delalande ◽  
Jan Osinga ◽  
Annemieke van der Goot ◽  
...  

Abstract Goldberg–Shprintzen syndrome (GOSHS) is a rare clinical disorder characterized by central and enteric nervous system defects. This syndrome is caused by inactivating mutations in the Kinesin Binding Protein (KBP) gene, which encodes a protein of which the precise function is largely unclear. We show that KBP expression is up-regulated during neuronal development in mouse cortical neurons. Moreover, KBP-depleted PC12 cells were defective in nerve growth factor-induced differentiation and neurite outgrowth, suggesting that KBP is required for cell differentiation and neurite development. To identify KBP interacting proteins, we performed a yeast two-hybrid screen and found that KBP binds almost exclusively to microtubule associated or related proteins, specifically SCG10 and several kinesins. We confirmed these results by validating KBP interaction with one of these proteins: SCG10, a microtubule destabilizing protein. Zebrafish studies further demonstrated an epistatic interaction between KBP and SCG10 in vivo . To investigate the possibility of direct interaction between KBP and microtubules, we undertook co-localization and in vitro binding assays, but found no evidence of direct binding. Thus, our data indicate that KBP is involved in neuronal differentiation and that the central and enteric nervous system defects seen in GOSHS are likely caused by microtubule-related defects.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2726
Author(s):  
James R. Bamburg ◽  
Laurie S. Minamide ◽  
O’Neil Wiggan ◽  
Lubna H. Tahtamouni ◽  
Thomas B. Kuhn

Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-β in Alzheimer’s disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.


Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 406 ◽  
Author(s):  
Catherine Malaplate ◽  
Aurelia Poerio ◽  
Marion Huguet ◽  
Claire Soligot ◽  
Elodie Passeri ◽  
...  

Lipids play multiple roles in preserving neuronal function and synaptic plasticity, and polyunsaturated fatty acids (PUFAs) have been of particular interest in optimizing synaptic membrane organization and function. We developed a green-based methodology to prepare nanoliposomes (NL) from lecithin that was extracted from fish head by-products. These NL range between 100–120 nm in diameter, with an n-3/n-6 fatty acid ratio of 8.88. The high content of n-3 PUFA (46.3% of total fatty acid content) and docosahexanoic acid (26%) in these NL represented a means for enrichment of neuronal membranes that are potentially beneficial for neuronal growth and synaptogenesis. To test this, the primary cultures of rat embryo cortical neurons were incubated with NL on day 3 post-culture for 24 h, followed by immunoblots or immunofluorescence to evaluate the NL effects on synaptogenesis, axonal growth, and dendrite formation. The results revealed that NL-treated cells displayed a level of neurite outgrowth and arborization on day 4 that was similar to those of untreated cells on day 5 and 6, suggesting accelerated synapse formation and neuronal development in the presence of NL. We propose that fish-derived NL, by virtue of their n-3 PUFA profile and neurotrophic effects, represent a new innovative bioactive vector for developing preventive or curative treatments for neurodegenerative diseases.


2013 ◽  
Vol 288 (20) ◽  
pp. 14531-14543 ◽  
Author(s):  
Tao Sun ◽  
Nuo Yu ◽  
Lu-Kai Zhai ◽  
Na Li ◽  
Chao Zhang ◽  
...  

The development of neuronal polarity is essential for the establishment of the accurate patterning of neuronal circuits in the brain. However, little is known about the underlying molecular mechanisms that control rapid axon elongation during neuronal development. Here, we report that c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) is highly expressed at axon tips during the critical period for axon development. Using gain- and loss-of-function approaches, immunofluorescence analysis, and in utero electroporation, we find that JIP3 can enhance axon elongation in primary hippocampal neurons and cortical neurons in vivo. We further demonstrate that JIP3 promotes axon elongation in a kinesin- and JNK-dependent manner using several deletion mutants of JIP3. Next, we demonstrate that the successful transportation of JIP3 to axon tips by kinesin is a prerequisite for enhancing JNK phosphorylation in this area and therefore promotes axon elongation, constituting a novel mechanism for coupling JIP3 anterograde transport with JNK signaling at the distal axons and axon elongation. Finally, our immunofluorescence data suggest that the activation of JNK at axon tips facilitates axon elongation by modulating cofilin activity and actin filament dynamics. These findings may have important implications for our understanding of neuronal axon elongation during development.


2019 ◽  
Author(s):  
Akiko Uyeda ◽  
Kohei Onishi ◽  
Teruyoshi Hirayama ◽  
Satoko Hattori ◽  
Tsuyoshi Miyakawa ◽  
...  

AbstractGenome stability is essential for brain development and function. However, the contribution of DNA repair to genome stability in neurons remains elusive. Here, we demonstrate that the base excision repair protein Polβ is involved in hippocampal neuronal differentiation via a TET-mediated active DNA demethylation during early postnatal stages. Polβ deficiency induced extensive DNA double-strand breaks (DSBs) in hippocampal neurons, and a lesser extent in cortical neurons, during a period in which decreased levels of 5-methylcytosine were observed in genomic DNA. Inhibition of the hydroxylation of 5-methylcytosine by microRNAs miR29a/b-1 expression diminished DSB formation. Conversely, its induction by TET1 overexpression increased DSBs. The damaged hippocampal neurons exhibited aberrant neuronal gene expression profiles and dendrite formation. Behavioral analyses revealed impaired spatial learning and memory in adulthood. Thus, Polβ maintains genome stability in the active DNA demethylation that occurs during postnatal neuronal development, thereby contributing to differentiation and subsequent behavior.


2004 ◽  
Vol 15 (5) ◽  
pp. 2093-2104 ◽  
Author(s):  
Yaojiong Wu ◽  
Wang Sheng ◽  
Liwen Chen ◽  
Haiheng Dong ◽  
Vivian Lee ◽  
...  

The chondroitin sulfate proteoglycan versican is one of the major extracellular components in the developing and adult brain. Here, we show that isoforms of versican play different roles in neuronal differentiation and neurite outgrowth. Expression of versican V1 isoform in PC12 cells induced complete differentiation, whereas expression of V2 induced an aborted differentiation accompanied by apoptosis. V1 promoted neurite outgrowth of hippocampal neurons, but V2 failed to do so. V1 transfection enhanced expression of epidermal growth factor receptor and integrins, and facilitated sustained extracellular signal-regulated kinase/MAPK phosphorylation. Blockade of the epidermal growth factor receptor, β1 integrin, or Src significantly inhibited neuronal differentiation. Finally, we demonstrated that versican V1 isoform also promoted differentiation of neural stem cells into neurons. Our results have implications for understanding how versican regulates neuronal development, function, and repair.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Md. Abdul Hannan ◽  
Md. Nazmul Haque ◽  
Raju Dash ◽  
Mahboob Alam ◽  
Il Soo Moon

AbstractPotentiating neuritogenesis through pharmacological intervention might hold therapeutic promise in neurodegenerative disorders and acute brain injury. Here, we investigated the novel neuritogenic potentials of a steroidal chlorohydrin, 3β, 6β-dichloro-5-hydroxy-5α-cholestane (hereafter, SCH) and the change in cellular proteome to gain insight into the underlying mechanism of its neurotrophic activity in hippocampal neurons. Morphometric analysis showed that SCH promoted early neuronal differentiation, dendritic arborization and axonal maturation. Proteomic and bioinformatic analysis revealed that SCH induced upregulation of several proteins, including those associated with neuronal differentiation and development. Immunocytochemical data further indicates that SCH-treated neurons showed upregulation of Hnrnpa2b1 and Map1b, validating their proteomic profiles. In addition, a protein-protein interaction network analysis identified TrkA as a potential target connecting most of the upregulated proteins. The neurite outgrowth effect of SCH was suppressed by TrkA inhibitor, GW441756, verifying TrkA-dependent activity of SCH, which further supports the connection of TrkA with the upregulated proteins. Also, the computational analysis revealed that SCH interacts with the NGF-binding domain of TrkA through Phe327 and Asn355. Collectively, our findings provide evidence that SCH promotes neuronal development via upregulating TrkA-signaling proteins and suggest that SCH could be a promising therapeutic agent in the prevention and treatment of neurodegenerative disorders.


Author(s):  
Sumei Li ◽  
Jifeng Zhang ◽  
Jiaqi Zhang ◽  
Jiong Li ◽  
Longfei Cheng ◽  
...  

Aims: Our work aims to revealing the underlying microtubule mechanism of neurites outgrowth during neuronal development, and also proposes a feasible intervention pathway for reconstructing neural network connections after nerve injury. Background: Microtubule polymerization and severing are the basis for the neurite outgrowth and branch formation. Collapsin response mediator protein 2 (CRMP2) regulates axonal growth and branching as a binding partner of the tubulin heterodimer to promote microtubule assembly. And spastin participates in the growth and regeneration of neurites by severing microtubules into small segments. However, how CRMP2 and spastin cooperate to regulate neurite outgrowth by controlling the microtubule dynamics needs to be elucidated. Objective: To explore whether neurite outgrowth was mediated by coordination of CRMP2 and spastin. Method: Hippocampal neurons were cultured in vitro in 24-well culture plates for 4 days before being used to perform the transfection. Calcium phosphate was used to transfect the CRMP2 and spastin constructs and their control into the neurons. An interaction between CRMP2 and spastin was examined by using pull down, CoIP and immunofluorescence colocalization assays. And immunostaining was also performed to determine the morphology of neurites. Result: We first demonstrated that CRMP2 interacted with spastin to promote the neurite outgrowth and branch formation. Furthermore, our results identified that phosphorylation modification failed to alter the binding affinities of CRMP2 for spastin, but inhibited their binding to microtubules. CRMP2 interacted with the MTBD domain of spastin via its C-terminus, and blocking the binding sites of them inhibited the outgrowth and branch formation of neurites. In addition, we confirmed one phosphorylation site S210 at spastin in hippocampal neurons and phosphorylation spastin at site S210 promoted the neurite outgrowth but not branch formation by remodeling microtubules. Conclusion: Taken together, our data demonstrated that the interaction of CRMP2 and spastin is required for neurite outgrowth and branch formation and their interaction is not regulated by their phosphorylation.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 262
Author(s):  
Qin-Wei Wu ◽  
Josef P. Kapfhammer

The CRISPR-Cas13 system based on a bacterial enzyme has been explored as a powerful new method for RNA manipulation. Due to the high efficiency and specificity of RNA editing/interference achieved by this system, it is currently being developed as a new therapeutic tool for the treatment of neurological and other diseases. However, the safety of this new generation of RNA therapies is still unclear. In this study, we constructed a vector expressing CRISPR-Cas13 under a constitutive neuron-specific promoter. CRISPR-Cas13 from Leptotrichia wadei was expressed in primary cultures of mouse cortical neurons. We found that the presence of CRISPR-Cas13 impedes the development of cultured neurons. These results show a neurotoxic action of Cas13 and call for more studies to test for and possibly mitigate the toxic effects of Cas13 enzymes in order to improve CRISPR-Cas13-based tools for RNA targeting.


Sign in / Sign up

Export Citation Format

Share Document