scholarly journals Angelica dahurica extracts attenuate CFA-induced inflammatory pain via TRPV1 in mice

Author(s):  
Chan Zhu ◽  
Meiyuan Wang ◽  
Jun Guo ◽  
Shu-Lan Su ◽  
Guang Yu ◽  
...  

Abstract Background: Angelica dahurica, belonging to the family Apiaceae, is a well-known herbal medicine. The roots of Angelica dahurica is commonly used for the treatment of headache, toothache, abscess, furunculosis, and acne. However, little is known about their analgesic molecular mechanism underlying pain relief. Here, we investigated the anti-nociceptive activity of Angelica dahurica extracts(ADE) in complete freund's adjuvant(CFA)-induced inflammatory pain mice models, and its possible mechanism of the action associated with transient receptor potential vanilloid member 1 (TRPV1) was also explored. Material and Methods: In this study, we used behavioral tests to assess the analgesic effect of the ADE on CFA-induced inflammatory pain mice models. TRPV1 protein activity in dorsal root ganglion (DRG) was assessed with calcium imaging assay. TRPV1 expression was detected with western blot and immunohistochemistry. Then we examined the constituents of ADE using combined ultra-performance liquid chromatography-quadrupole time-of-light mass spectrometry (UPLC/Q−TOF−MS).Results: Our results showed that ADE effectively attenuated mechanical and thermal hypersensitivities in CFA-induced inflammatory pain model in mice. ADE also significantly reduced the activity and the protein expression of TRPV1 in DRG from CFA mice. Conclusion: These findings suggest that ADE exhibits an analgesic effect in CFA inflammatory pain models by targeting TRPV1. Therefore, ADE might be an attractive and suitable analgesic agent for the management of chronic inflammatory pain.

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Ying-jun Liu ◽  
Xiao-xi Lin ◽  
Jian-qiao Fang ◽  
Fang Fang

Mas-related G-protein-coupled receptor C (MrgprC) plays an important role in modulating chronic inflammatory pain. Electroacupuncture (EA) has a satisfactory analgesic effect on chronic pain. This study aimed to investigate the involvement of MrgprC and its transient receptor potential vanilloid 1 (TRPV1) pathway in EA analgesia in chronic inflammatory pain. Chronic inflammatory pain was induced by subcutaneously injecting complete Freund’s adjuvant (CFA) into the left hind paw. EA (2/100 Hz) stimulation was administered. MrgprC siRNAs were intrathecally administered to inhibit MrgprC expression, and bovine adrenal medulla 8-22 (BAM8-22) was used to activate MrgprC. The mechanical allodynia was decreased by EA significantly since day 3. The piled analgesic effect of EA was partially blocked by 6 intrathecal administrations of MrgprC siRNA. Both EA and BAM8-22 could downregulate the expression of TRPV1 and PKC in both the DRG and the SCDH. Both EA and BAM8-22 could also decrease the TRPV1 translocation and p-TRPV1 level in both the DRG and the SCDH. The effects of EA on PKCε, TRPV1 translocation, and p-TRPV1 in both the DRG and the SCDH were reversed by MrgprC siRNA. The results indicated that MrgprC played crucial roles in chronic pain modulation and was involved in EA analgesia partially through the regulation of TRPV1 function at the DRG and SCDH levels.


2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2094200
Author(s):  
Wan Ni ◽  
Nianyun Wang ◽  
Shenglan Tian ◽  
Qingbang Xu

The effect of emodin on complete Freund’s adjuvant (CFA)-induced inflammatory pain in rats and its potential molecular mechanism was investigated. For this, a rat model of inflammatory pain induced by CFA was established and rats were treated with emodin by intraperitoneal injection. The pain threshold was evaluated by the von Frey, thermo hyperalgesia, and cold plate tests. The mRNA expression of transient receptor potential channel ankyrin type-1 ( Trpa1) and transient receptor potential vanilloid 1 ( Trpv1) was detected by quantitative reverse transcription polymerase chain reaction, and the level of inflammatory cytokines was determined by enzyme-linked immunosorbent assay. The mechanical and thermal pain thresholds of CFA-treated rats were significantly lower than those of the control rats, while the paw withdrawal responses in response to cold stimulation were higher than that of the control group. Emodin treatment significantly improved CFA-induced hyperalgesia. Further results showed that emodin inhibits the upregulation of Trpa1 and Trpv1 mRNA expression in the dorsal root ganglion (DRG) of rats with inflammatory pain compared with the control group. Emodin also significantly reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) in the serum of rats with inflammatory pain. Thus, emodin may inhibit hyperalgesia induced by inflammatory stimulation by downregulating the mRNA expression of Trpa1 and Trpv1 in DRG neurons and reducing the levels of TNF-α, IL-1β, and IL-6.


2020 ◽  
Vol 21 (14) ◽  
pp. 5019
Author(s):  
Maja Payrits ◽  
Ádám Horváth ◽  
Tünde Biró-Sütő ◽  
János Erostyák ◽  
Géza Makkai ◽  
...  

Transient Receptor Potential Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons and regulate nociceptor and inflammatory functions. Resolvins are endogenous lipid mediators. Resolvin D1 (RvD1) is described as a selective inhibitor of TRPA1-related postoperative and inflammatory pain in mice acting on the G protein-coupled receptor DRV1/GPR32. Resolvin D2 (RvD2) is a very potent TRPV1 and TRPA1 inhibitor in DRG neurons, and decreases inflammatory pain in mice acting on the GPR18 receptor, via TRPV1/TRPA1-independent mechanisms. We provided evidence that resolvins inhibited neuropeptide release from the stimulated sensory nerve terminals by TRPV1 and TRPA1 activators capsaicin (CAPS) and allyl-isothiocyanate (AITC), respectively. We showed that RvD1 and RvD2 in nanomolar concentrations significantly decreased TRPV1 and TRPA1 activation on sensory neurons by fluorescent calcium imaging and inhibited the CAPS- and AITC-evoked 45Ca-uptake on TRPV1- and TRPA1-expressing CHO cells. Since CHO cells are unlikely to express resolvin receptors, resolvins are suggested to inhibit channel opening through surrounding lipid raft disruption. Here, we proved the ability of resolvins to alter the membrane polarity related to cholesterol composition by fluorescence spectroscopy. It is concluded that targeting lipid raft integrity can open novel peripheral analgesic opportunities by decreasing the activation of nociceptors.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Jun Yang ◽  
Ching-Liang Hsieh ◽  
Yi-Wen Lin

Chronic inflammatory pain may result from peripheral tissue injury or inflammation, increasing the release of protons, histamines, adenosine triphosphate, and several proinflammatory cytokines and chemokines. Transient receptor potential vanilloid 1 (TRPV1) is known to be involved in acute to subacute neuropathic and inflammatory pain; however, its exact mechanisms in chronic inflammatory pain are not elucidated. Our results showed that EA significantly reduced chronic mechanical and thermal hyperalgesia in the chronic inflammatory pain model. Chronic mechanical and thermal hyperalgesia were also abolished in TRPV1−/− mice. TRPV1 increased in the dorsal root ganglion (DRG) and spinal cord (SC) at 3 weeks after CFA injection. The expression levels of downstream molecules such as pPKA, pPI3K, and pPKC increased, as did those of pERK, pp38, and pJNK. Transcription factors (pCREB and pNFκB) and nociceptive ion channels (Nav1.7 and Nav1.8) were involved in this process. Inflammatory mediators such as GFAP, S100B, and RAGE were also involved. The expression levels of these molecules were reduced in EA and TRPV1−/− mice but not in the sham EA group. Our data provided evidence to support the clinical use of EA for treating chronic inflammatory pain.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Wei-Hsin Chen ◽  
Jason T. C. Tzen ◽  
Ching Liang Hsieh ◽  
Yung Hsiang Chen ◽  
Tzu-Jou Lin ◽  
...  

Although pain is a major human affliction, our understanding of pain mechanisms is limited. TRPV1 (transient receptor potential vanilloid subtype 1) and TRPV4 are two crucial receptors involved in inflammatory pain, but their roles in EA- (electroacupuncture-) mediated analgesia are unknown. We injected mice with carrageenan (carra) or a complete Freund’s adjuvant (CFA) to model inflammatory pain and investigated the analgesic effect of EA using animal behavior tests, immunostaining, Western blotting, and a whole-cell recording technique. The inflammatory pain model mice developed both mechanical and thermal hyperalgesia. Notably, EA at the ST36 acupoint reversed these phenomena, indicating its curative effect in inflammatory pain. The protein levels of TRPV1 and TRPV4 in DRG (dorsal root ganglion) neurons were both increased at day 4 after the initiation of inflammatory pain and were attenuated by EA, as demonstrated by immunostaining and Western blot analysis. We verified DRG electrophysiological properties to confirm that EA ameliorated peripheral nerve hyperexcitation. Our results indicated that the AP (action potential) threshold, rise time, and fall time, and the percentage and amplitude of TRPV1 and TRPV4 were altered by EA, indicating that EA has an antinociceptive role in inflammatory pain. Our results demonstrate a novel role for EA in regulating TRPV1 and TRPV4 protein expression and nerve excitation in mouse inflammatory pain models.


Sign in / Sign up

Export Citation Format

Share Document