scholarly journals Preparation, Structural Analysis, and Tunability of Optical and Dielectric Characteristics of Mn–modified SrLaLiTeO6 Double Perovskite

Author(s):  
MUHAMMAD ZHARFAN MOHD HALIZAN ◽  
ZAKIAH MOHAMED ◽  
AHMAD KAMAL HAYATI YAHYA

Abstract SrLaLiTe 1- x Mn x O 6 ( x = 0.02, 0.04, 0.06, 0.08, 0.10) double perovskites have been prepared using solid state method. Studies on structural by applying X–ray diffraction (XRD) characterization found that all compounds formed in monoclinic, P2 1 /n symmetry with reduction of lattice parameters and unit cell volume as dopant concentration increased. The formation of Te 6+ /Mn 6+ –O–Li + octahedral structure can be confirmed with the presence of peaks at certain wavenumbers indicating vibrations of Te – O or Mn – O bonds. As dopant concentration increased, field emission scanning electron microscope (FESEM) characterization found that the increasing trend of formation in grains sizes from x = 0.02 to x = 0.08, and its effects towards dielectric properties which were conducted by electrochemical impedance spectroscopy (EIS) studies were discussed in this paper. Other discussions included were regarding the significant effect of dopant towards optical band gap, E opt and absorption frequencies of prepared compounds compared to pristine compound indicating its promising potential for optoelectronic device application.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Z. M. Halizan ◽  
Z. Mohamed ◽  
A. K. Yahya

AbstractIn electronic applications, good dielectric permittivity material has huge potential in the capacitive energy storage devices. Herein, in the present work the dielectric study of SrLaLiTe1−xMnxO6 (x = 0.02, 0.04, 0.06, 0.08, and 0.10) double perovskites has been studied and discussed. These compounds were prepared through solid-state reaction method. All of the prepared compounds were confirmed to crystallized in monoclinic structure of P21/n space symmetry with better crystallization when dopant concentrations increased until x = 0.08. The formation of Li–O–Te/Mn bonds in octahedral structures in all compounds were confirmed in this study. The existence of peaks at specific wavenumbers indicated vibrations of B–site cations’ bonds. When dopant amounts were increased from x = 0.02 to x = 0.08, there was an increasing trend of grains sizes formation in the compounds. The discussions on effects of grain sizes towards dielectric properties were included in this paper. Other important results and discussions comprised of the significant effects of dopant on the optical band gap (Eopt) and absorption frequencies of the compounds. The decreasing trend of Eopt towards semiconductor range indicated the compounds’ promising potentials for optoelectronic device application.


2013 ◽  
Vol 310 ◽  
pp. 90-94 ◽  
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Huang Rong Li ◽  
Qian Peng Yang ◽  
Shi Biao Zhou ◽  
...  

Li2FeSiO4/C and Li1.97Mg0.03FeSiO4/C composites were successfully prepared by a solid-state method. Both samples were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), the charge-discharge test and electrochemical impedance spectra measurement, respectively. It was found that the Li1.97Mg0.03FeSiO4/C composite exhibited an excellent rate capability with a discharge capacity of 144mAh g-1 at 0.2C and 97mAh g-1 at 5C, and after 100 cycles at 1 C, 96% of its initial capacity was retained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. P. Shinde ◽  
E. J. Lee ◽  
M. Manawan ◽  
A. Lee ◽  
S.-Y. Park ◽  
...  

AbstractThe crystal structure, cryogenic magnetic properties, and magnetocaloric performance of double perovskite Eu2NiMnO6 (ENMO), Gd2NiMnO6 (GNMO), and Tb2NiMnO6 (TNMO) ceramic powder samples synthesized by solid-state method have been investigated. X-ray diffraction structural investigation reveal that all compounds crystallize in the monoclinic structure with a P21/n space group. A ferromagnetic to paramagnetic (FM-PM) second-order phase transition occurred in ENMO, GNMO, and TNMO at 143, 130, and 112 K, respectively. Maximum magnetic entropy changes and relative cooling power with a 5 T applied magnetic field are determined to be 3.2, 3.8, 3.5 J/kgK and 150, 182, 176 J/kg for the investigated samples, respectively. The change in structural, magnetic, and magnetocaloric effect attributed to the superexchange mechanism of Ni2+–O–Mn3+ and Ni2+–O–Mn4+. The various atomic sizes of Eu, Gd, and Tb affect the ratio of Mn4+/Mn3+, which is responsible for the considerable change in properties of double perovskite.


2015 ◽  
Vol 15 (10) ◽  
pp. 8042-8047 ◽  
Author(s):  
Minchan Jeong ◽  
Hyun-Soo Kim ◽  
Dong-Sik Bae ◽  
Chang-Woo Lee ◽  
Bong-Soo Jin

In this study, the Li3V2–X YX(PO4)3 compounds have been synthesized by a simple solid state method. In addition, a polyurethane was added to apply carbon coating on the surface of the Li3V2–X YX(PO4)3 particles for enhancement of the electrical conductivity. The crystal structure and morphology of the synthesized Li3V2–XYX(PO4)3/C (LVYP/C) was investigated using an X-ray diffraction (XRD) and a scanning electron microscopy (SEM) systematically. The electrochemical performance of synthesized material, such as the initial capacity, rate capability, cycling performance and EIS was evaluated. The sizes of synthesized particle ranged from 1 to 5 μm. The Li3V2–XYX(PO4)3/C (X = 0.02) delivered the initial discharge capacity of 171.5 mAh · g–1 at 0.1C rate. It showed a capacity retention ratio of 73.0% at 1.0C after 100th cycle. The electrochemical impedance spectroscopies (EIS) results revealed that the charge transfer resistance of the material decreases by Y doping.


2011 ◽  
Vol 89 (6) ◽  
pp. 688-696 ◽  
Author(s):  
Wang Hay Kan ◽  
Trang T. Trinh ◽  
Tobias Fürstenhaupt ◽  
Venkataraman Thangadurai

We report the synthesis, crystal structure, and electrochemical properties of new Fe-doped Ba2(Ca1–x–yFexNby)(Nb1–zFez)O6–δ (Fe–BCN). The Fe–BCN was synthesized by a solid-state method in air using corresponding metal oxides and salts at elevated temperature. All of the observed powder X-ray diffraction (PXRD) peaks of the investigated Fe–BCN were indexed as cubic Fm-3m (space group No. 225) double perovskite-type structure with cell constants a ∼ 8.4 Å and is consistent with selected area electron diffraction (SAED). Rietveld analysis suggested the distribution of Fe was at both 4a and 4b sites, supported the proposed chemical formula Ba2(Ca1–x–yFexNby)(Nb1–zFez)O6–δ. This was further verified by bond valence sum (BVS) analysis of the cations. The Fe–BCN showed superior chemical stability in pure CO2 and boiling H2O confirmed by PXRD and FTIR. The electrical conductivity was determined by AC impedance spectroscopy. Among the samples investigated, Ba2(Ca0.79Fe0.21)(Nb0.71Fe0.29)O6–δ showed the highest total (bulk + grain-boundary) conductivity of 1.1 × 10−2 S cm–1 in humidified (3%) N2 at 600 °C with activation energy of 0.43 eV in the temperature range 200–800 °C.


In the last decade, large number of research has been made to increase the capacity of anodes by changing the graphite with Si or Sn and conversion based materials such as MnFe2O4 , Co3O4 , Fe2O3 and NiO etc.,. In the present work, MnFe2O4 nanoparticles has synthesized by simple solid-state method. The crystal structure of MnFe2O4 evaluated by powder X-ray diffraction (XRD) and its morphology invetigated by Scanning Electron Microscopy (SEM), and its electrochemical performance has been carried out by Cyclic Voltammetry (CV), charge-discharge and electrochemical impedance analysis (EIS). The results of charge-discharge performance showed an excellent discharge capacity of 860 mA hg-1 when tested as anode for Li-ion battery applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Hai-Lang Zhang ◽  
Nanchun Xiang

To improve the cycle performance of spinel LiMn2O4as the cathode of 4-V-class lithium secondary batteries, spinel phases Li1.02Mn1.92Al0.02Fe0.02Cr0.02O4-xFx(x=0, 0.08) have been successfully prepared by a conventional solid-state method. The structure and physicochemical properties of this as-prepared powder were investigated by powder X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge test in detail. The results reveal that the multiple doping spinel Li1.02Mn1.92Al0.02Fe0.02Cr0.02O4F0.08have better electrochemical performance than the undoped or only metal-element doped material, which may be contributed to the multiple cation and anion doping to lead to a more stable spinel framework with good capacity retention rate.


2000 ◽  
Vol 628 ◽  
Author(s):  
G. González ◽  
P. J. Retuert ◽  
S. Fuentes

ABSTRACTBlending the biopolymer chitosan (CHI) with poly (aminopropilsiloxane) oligomers (pAPS), and poly (ethylene oxide) (PEO) in the presence of lithium perchlorate lead to ion conducting products whose conductivity depends on the composition of the mixture. A ternary phase diagram for mixtures containing 0.2 M LiClO4 shows a zone in which the physical properties of the products - transparent, flexible, mechanically robust films - indicate a high degree of molecular compatibilization of the components. Comparison of these films with binary CHI-pAPS nanocomposites as well as the microscopic aspect, thermal behavior, and X-ray diffraction pattern of the product with the composition PEO/CHI/pAPS/LiClO4 1:0.5:0.6:0.2 molar ratio indicates that these films may be described as a layered nanocomposite. In this composite, lithium species coordinated by PEO and pAPS should be inserted into chitosan layers. Electrochemical impedance spectroscopy measurements indicate the films are pure ionic conductors with a maximal bulk conductivity of 1.7*10-5 Scm-1 at 40 °C and a sample-electrode interface capacitance of about 1.2*10-9 F.


Author(s):  
Hayette Faid

AbstractIn this work, Zn-Ni alloys have been deposited on steel from sulfate bath, by electrodeposition method. The effect of Zn content on deposits properties was studied by cyclic voltammetry (CV), chronoaperometry (CA), linear stripping voltammetry (ALSV) and diffraction (XRD) and scanning electronic microscopy (SEM). The corrosion behavior in 3.5 wt. NaCl solution was examined using anodic polarization test and electrochemical impedance spectroscopy. X-ray diffraction of show that Zn-Ni alloys structure is composed of δ phase and γ phase, which increase with the decrease of Zn content in deposits. Results show that deposits obtained from bath less Zn2+ concentration exhibited better corrosion resistance.


2020 ◽  
Vol 38 (4A) ◽  
pp. 491-500
Author(s):  
Abeer F. Al-Attar ◽  
Saad B. H. Farid ◽  
Fadhil A. Hashim

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.


Sign in / Sign up

Export Citation Format

Share Document