TemporalNode2vec: Task-agnostic and Task-specific Temporal Node Embedding

2020 ◽  
Author(s):  
Mounir HADDAD ◽  
Cécile BOTHOREL ◽  
Philippe LENCA ◽  
Dominique BEDART

Abstract The goal of graph embedding is to learn a representation of graphs vertices in a latent low-dimensional space in order to encode the structural information that lies in graphs. While real-world networks evolve over time, the majority of research focuses on static networks, ignoring local and global evolution patterns. A simplistic approach consists of learning nodes embeddings independently for each time step. This can cause unstable and inefficient representations over time. In this paper, we present TemporalNode2vec, a novel dynamic graph embedding approach that learns continuous time-aware node representations. Overall, we demonstrate that our method improves node classification tasks comparing to previous static and dynamic approaches as it achieves up to 14% gain regarding the F1 score metric. We also prove that our model is more data-efficient than several baseline methods, as it affords to achieve good performances with a limited number of node representation features. Moreover, we develop and evaluate a task-specific variant of our method called TsTemporalNode2vec, aiming to improve the performances and the data-efficiency of node classification tasks.

2021 ◽  
Vol 3 ◽  
Author(s):  
Muhammad Ifte Islam ◽  
Farhan Tanvir ◽  
Ginger Johnson ◽  
Esra Akbas ◽  
Mehmet Emin Aktas

Network embedding that encodes structural information of graphs into a low-dimensional vector space has been proven to be essential for network analysis applications, including node classification and community detection. Although recent methods show promising performance for various applications, graph embedding still has some challenges; either the huge size of graphs may hinder a direct application of the existing network embedding method to them, or they suffer compromises in accuracy from locality and noise. In this paper, we propose a novel Network Embedding method, NECL, to generate embedding more efficiently or effectively. Our goal is to answer the following two questions: 1) Does the network Compression significantly boost Learning? 2) Does network compression improve the quality of the representation? For these goals, first, we propose a novel graph compression method based on the neighborhood similarity that compresses the input graph to a smaller graph with incorporating local proximity of its vertices into super-nodes; second, we employ the compressed graph for network embedding instead of the original large graph to bring down the embedding cost and also to capture the global structure of the original graph; third, we refine the embeddings from the compressed graph to the original graph. NECL is a general meta-strategy that improves the efficiency and effectiveness of many state-of-the-art graph embedding algorithms based on node proximity, including DeepWalk, Node2vec, and LINE. Extensive experiments validate the efficiency and effectiveness of our method, which decreases embedding time and improves classification accuracy as evaluated on single and multi-label classification tasks with large real-world graphs.


Author(s):  
Xiaofeng Zhu ◽  
Cong Lei ◽  
Hao Yu ◽  
Yonggang Li ◽  
Jiangzhang Gan ◽  
...  

In this paper, we propose conducting Robust Graph Dimensionality Reduction (RGDR) by learning a transformation matrix to map original high-dimensional data into their low-dimensional intrinsic space without the influence of outliers. To do this, we propose simultaneously 1) adaptively learning three variables, \ie a reverse graph embedding of original data, a transformation matrix, and a graph matrix preserving the local similarity of original data in their low-dimensional intrinsic space; and 2) employing robust estimators to  avoid outliers involving the processes of optimizing these three matrices. As a result, original data are cleaned by two strategies, \ie a prediction of original data based on three resulting variables and robust estimators, so that the transformation matrix can be learnt from accurately estimated intrinsic space with the helping of the reverse graph embedding and the graph matrix. Moreover, we propose a new optimization algorithm to the resulting objective function as well as theoretically prove the convergence of our optimization algorithm. Experimental results indicated that our proposed method outperformed all the comparison methods in terms of different classification tasks.


2020 ◽  
Vol 8 (6) ◽  
pp. 3618-3621

Graph embedding in parallel processing techniques has acquired considerable attention and hence raised as an efficient approach for reducing overhead data into low-dimensional space. Optimal layout and congestion are powerful parameters to examine the capability of embedding. In this study, Modified Congestion and  -Partition lemmas are utilized to obtain the optimal layout of Turán graph into path and windmill graphs.


Author(s):  
Jing Qian ◽  
Gangmin Li ◽  
Katie Atkinson ◽  
Yong Yue

Knowledge graph embedding (KGE) is to project entities and relations of a knowledge graph (KG) into a low-dimensional vector space, which has made steady progress in recent years. Conventional KGE methods, especially translational distance-based models, are trained through discriminating positive samples from negative ones. Most KGs store only positive samples for space efficiency. Negative sampling thus plays a crucial role in encoding triples of a KG. The quality of generated negative samples has a direct impact on the performance of learnt knowledge representation in a myriad of downstream tasks, such as recommendation, link prediction and node classification. We summarize current negative sampling approaches in KGE into three categories, static distribution-based, dynamic distribution-based and custom cluster-based respectively. Based on this categorization we discuss the most prevalent existing approaches and their characteristics. It is a hope that this review can provide some guidelines for new thoughts about negative sampling in KGE.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1767
Author(s):  
Xin Xu ◽  
Yang Lu ◽  
Yupeng Zhou ◽  
Zhiguo Fu ◽  
Yanjie Fu ◽  
...  

Network representation learning aims to learn low-dimensional, compressible, and distributed representational vectors of nodes in networks. Due to the expensive costs of obtaining label information of nodes in networks, many unsupervised network representation learning methods have been proposed, where random walk strategy is one of the wildly utilized approaches. However, the existing random walk based methods have some challenges, including: 1. The insufficiency of explaining what network knowledge in the walking path-samplings; 2. The adverse effects caused by the mixture of different information in networks; 3. The poor generality of the methods with hyper-parameters on different networks. This paper proposes an information-explainable random walk based unsupervised network representation learning framework named Probabilistic Accepted Walk (PAW) to obtain network representation from the perspective of the stationary distribution of networks. In the framework, we design two stationary distributions based on nodes’ self-information and local-information of networks to guide our proposed random walk strategy to learn representational vectors of networks through sampling paths of nodes. Numerous experimental results demonstrated that the PAW could obtain more expressive representation than the other six widely used unsupervised network representation learning baselines on four real-world networks in single-label and multi-label node classification tasks.


Author(s):  
Shirui Pan ◽  
Ruiqi Hu ◽  
Guodong Long ◽  
Jing Jiang ◽  
Lina Yao ◽  
...  

Graph embedding is an effective method to represent graph data in a low dimensional space for graph analytics.  Most existing embedding algorithms typically focus on preserving the topological structure or minimizing the reconstruction errors of graph data,  but they have mostly ignored the data distribution of the latent codes from the graphs, which often results in inferior embedding in  real-world  graph data. In this paper, we propose a novel adversarial graph embedding framework for graph data. The framework encodes the topological structure and node content in a graph to a compact representation, on which a decoder is trained to reconstruct the graph structure. Furthermore, the latent representation is enforced to match a prior distribution via an adversarial training scheme. To learn a robust embedding,  two variants of adversarial approaches,  adversarially regularized graph autoencoder (ARGA) and adversarially regularized variational graph autoencoder (ARVGA), are developed. Experimental studies on real-world graphs validate our design and demonstrate that our algorithms outperform baselines by a wide margin in link prediction,  graph clustering, and graph visualization tasks.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
H. Zhang ◽  
J. J. Zhou ◽  
R. Li

Graph embedding aims to learn the low-dimensional representation of nodes in the network, which has been paid more and more attention in many graph-based tasks recently. Graph Convolution Network (GCN) is a typical deep semisupervised graph embedding model, which can acquire node representation from the complex network. However, GCN usually needs to use a lot of labeled data and additional expressive features in the graph embedding learning process, so the model cannot be effectively applied to undirected graphs with only network structure information. In this paper, we propose a novel unsupervised graph embedding method via hierarchical graph convolution network (HGCN). Firstly, HGCN builds the initial node embedding and pseudo-labels for the undirected graphs, and then further uses GCNs to learn the node embedding and update labels, finally combines HGCN output representation with the initial embedding to get the graph embedding. Furthermore, we improve the model to match the different undirected networks according to the number of network node label types. Comprehensive experiments demonstrate that our proposed HGCN and HGCN∗ can significantly enhance the performance of the node classification task.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Jonathan Bourne

AbstractThis paper introduces the strain elevation tension spring embedding (SETSe) algorithm. SETSe is a novel graph embedding method that uses a physical model to project feature-rich networks onto a manifold with semi-Euclidean properties. Due to its method, SETSe avoids the tractability issues faced by traditional force-directed graphs, having an iteration time and memory complexity that is linear to the number of edges in the network. SETSe is unusual as an embedding method as it does not reduce dimensionality or explicitly attempt to place similar nodes close together in the embedded space. Despite this, the algorithm outperforms five common graph embedding algorithms, on graph classification and node classification tasks, in low-dimensional space. The algorithm is also used to embed 100 social networks ranging in size from 700 to over 40,000 nodes and up to 1.5 million edges. The social network embeddings show that SETSe provides a more expressive alternative to the popular assortativity metric and that even on large complex networks, SETSe’s classification ability outperforms the naive baseline and the other embedding methods in low-dimensional representation. SETSe is a fast and flexible unsupervised embedding algorithm that integrates node attributes and graph topology to produce interpretable results.


NeuroImage ◽  
2021 ◽  
pp. 118200
Author(s):  
Sayan Ghosal ◽  
Qiang Chen ◽  
Giulio Pergola ◽  
Aaron L. Goldman ◽  
William Ulrich ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


Sign in / Sign up

Export Citation Format

Share Document