scholarly journals Proximity-Based Compression for Network Embedding

2021 ◽  
Vol 3 ◽  
Author(s):  
Muhammad Ifte Islam ◽  
Farhan Tanvir ◽  
Ginger Johnson ◽  
Esra Akbas ◽  
Mehmet Emin Aktas

Network embedding that encodes structural information of graphs into a low-dimensional vector space has been proven to be essential for network analysis applications, including node classification and community detection. Although recent methods show promising performance for various applications, graph embedding still has some challenges; either the huge size of graphs may hinder a direct application of the existing network embedding method to them, or they suffer compromises in accuracy from locality and noise. In this paper, we propose a novel Network Embedding method, NECL, to generate embedding more efficiently or effectively. Our goal is to answer the following two questions: 1) Does the network Compression significantly boost Learning? 2) Does network compression improve the quality of the representation? For these goals, first, we propose a novel graph compression method based on the neighborhood similarity that compresses the input graph to a smaller graph with incorporating local proximity of its vertices into super-nodes; second, we employ the compressed graph for network embedding instead of the original large graph to bring down the embedding cost and also to capture the global structure of the original graph; third, we refine the embeddings from the compressed graph to the original graph. NECL is a general meta-strategy that improves the efficiency and effectiveness of many state-of-the-art graph embedding algorithms based on node proximity, including DeepWalk, Node2vec, and LINE. Extensive experiments validate the efficiency and effectiveness of our method, which decreases embedding time and improves classification accuracy as evaluated on single and multi-label classification tasks with large real-world graphs.

Author(s):  
Junliang Guo ◽  
Linli Xu ◽  
Jingchang Liu

Recent advances in the field of network embedding have shown that low-dimensional network representation is playing a critical role in network analysis. Most existing network embedding methods encode the local proximity of a node, such as the first- and second-order proximities. While being efficient, these methods are short of leveraging the global structural information between nodes distant from each other. In addition, most existing methods learn embeddings on one single fixed network, and thus cannot be generalized to unseen nodes or networks without retraining. In this paper we present SPINE, a method that can jointly capture the local proximity and proximities at any distance, while being inductive to efficiently deal with unseen nodes or networks. Extensive experimental results on benchmark datasets demonstrate the superiority of the proposed framework over the state of the art.


2020 ◽  
Author(s):  
Mounir HADDAD ◽  
Cécile BOTHOREL ◽  
Philippe LENCA ◽  
Dominique BEDART

Abstract The goal of graph embedding is to learn a representation of graphs vertices in a latent low-dimensional space in order to encode the structural information that lies in graphs. While real-world networks evolve over time, the majority of research focuses on static networks, ignoring local and global evolution patterns. A simplistic approach consists of learning nodes embeddings independently for each time step. This can cause unstable and inefficient representations over time. In this paper, we present TemporalNode2vec, a novel dynamic graph embedding approach that learns continuous time-aware node representations. Overall, we demonstrate that our method improves node classification tasks comparing to previous static and dynamic approaches as it achieves up to 14% gain regarding the F1 score metric. We also prove that our model is more data-efficient than several baseline methods, as it affords to achieve good performances with a limited number of node representation features. Moreover, we develop and evaluate a task-specific variant of our method called TsTemporalNode2vec, aiming to improve the performances and the data-efficiency of node classification tasks.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-23
Author(s):  
Guojie Song ◽  
Yun Wang ◽  
Lun Du ◽  
Yi Li ◽  
Junshan Wang

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low-dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification, network visualization, and link prediction. The source code of GNE is available online.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Gu ◽  
Aditya Tandon ◽  
Yong-Yeol Ahn ◽  
Filippo Radicchi

AbstractNetwork embedding is a general-purpose machine learning technique that encodes network structure in vector spaces with tunable dimension. Choosing an appropriate embedding dimension – small enough to be efficient and large enough to be effective – is challenging but necessary to generate embeddings applicable to a multitude of tasks. Existing strategies for the selection of the embedding dimension rely on performance maximization in downstream tasks. Here, we propose a principled method such that all structural information of a network is parsimoniously encoded. The method is validated on various embedding algorithms and a large corpus of real-world networks. The embedding dimension selected by our method in real-world networks suggest that efficient encoding in low-dimensional spaces is usually possible.


2021 ◽  
Vol 11 (5) ◽  
pp. 2371
Author(s):  
Junjian Zhan ◽  
Feng Li ◽  
Yang Wang ◽  
Daoyu Lin ◽  
Guangluan Xu

As most networks come with some content in each node, attributed network embedding has aroused much research interest. Most existing attributed network embedding methods aim at learning a fixed representation for each node encoding its local proximity. However, those methods usually neglect the global information between nodes distant from each other and distribution of the latent codes. We propose Structural Adversarial Variational Graph Auto-Encoder (SAVGAE), a novel framework which encodes the network structure and node content into low-dimensional embeddings. On one hand, our model captures the local proximity and proximities at any distance of a network by exploiting a high-order proximity indicator named Rooted Pagerank. On the other hand, our method learns the data distribution of each node representation while circumvents the side effect its sampling process causes on learning a robust embedding through adversarial training. On benchmark datasets, we demonstrate that our method performs competitively compared with state-of-the-art models.


Author(s):  
Xiaofeng Zhu ◽  
Cong Lei ◽  
Hao Yu ◽  
Yonggang Li ◽  
Jiangzhang Gan ◽  
...  

In this paper, we propose conducting Robust Graph Dimensionality Reduction (RGDR) by learning a transformation matrix to map original high-dimensional data into their low-dimensional intrinsic space without the influence of outliers. To do this, we propose simultaneously 1) adaptively learning three variables, \ie a reverse graph embedding of original data, a transformation matrix, and a graph matrix preserving the local similarity of original data in their low-dimensional intrinsic space; and 2) employing robust estimators to  avoid outliers involving the processes of optimizing these three matrices. As a result, original data are cleaned by two strategies, \ie a prediction of original data based on three resulting variables and robust estimators, so that the transformation matrix can be learnt from accurately estimated intrinsic space with the helping of the reverse graph embedding and the graph matrix. Moreover, we propose a new optimization algorithm to the resulting objective function as well as theoretically prove the convergence of our optimization algorithm. Experimental results indicated that our proposed method outperformed all the comparison methods in terms of different classification tasks.


Author(s):  
Yu Li ◽  
Ying Wang ◽  
Tingting Zhang ◽  
Jiawei Zhang ◽  
Yi Chang

Network embedding is an effective approach to learn the low-dimensional representations of vertices in networks, aiming to capture and preserve the structure and inherent properties of networks. The vast majority of existing network embedding methods exclusively focus on vertex proximity of networks, while ignoring the network internal community structure. However, the homophily principle indicates that vertices within the same community are more similar to each other than those from different communities, thus vertices within the same community should have similar vertex representations. Motivated by this, we propose a novel network embedding framework NECS to learn the Network Embedding with Community Structural information, which preserves the high-order proximity and incorporates the community structure in vertex representation learning. We formulate the problem into a principled optimization framework and provide an effective alternating algorithm to solve it. Extensive experimental results on several benchmark network datasets demonstrate the effectiveness of the proposed framework in various network analysis tasks including network reconstruction, link prediction and vertex classification.


Author(s):  
Jing Qian ◽  
Gangmin Li ◽  
Katie Atkinson ◽  
Yong Yue

Knowledge graph embedding (KGE) is to project entities and relations of a knowledge graph (KG) into a low-dimensional vector space, which has made steady progress in recent years. Conventional KGE methods, especially translational distance-based models, are trained through discriminating positive samples from negative ones. Most KGs store only positive samples for space efficiency. Negative sampling thus plays a crucial role in encoding triples of a KG. The quality of generated negative samples has a direct impact on the performance of learnt knowledge representation in a myriad of downstream tasks, such as recommendation, link prediction and node classification. We summarize current negative sampling approaches in KGE into three categories, static distribution-based, dynamic distribution-based and custom cluster-based respectively. Based on this categorization we discuss the most prevalent existing approaches and their characteristics. It is a hope that this review can provide some guidelines for new thoughts about negative sampling in KGE.


Author(s):  
Lun Du ◽  
Zhicong Lu ◽  
Yun Wang ◽  
Guojie Song ◽  
Yiming Wang ◽  
...  

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification and network visualization. The source code of GNE is available online.


2019 ◽  
Vol 16 (2) ◽  
pp. 597-614 ◽  
Author(s):  
Xin Liu ◽  
Chenyi Zhuang ◽  
Tsuyoshi Murata ◽  
Kyoung-Sook Kim ◽  
Natthawut Kertkeidkachorn

Graph embedding aims at learning representations of nodes in a low dimensional vector space. Good embeddings should preserve the graph topological structure. To study how much such structure can be preserved, we propose evaluation methods from four aspects: 1) How well the graph can be reconstructed based on the embeddings, 2) The divergence of the original link distribution and the embedding-derived distribution, 3) The consistency of communities discovered from the graph and embeddings, and 4) To what extent we can employ embeddings to facilitate link prediction. We find that it is insufficient to rely on the embeddings to reconstruct the original graph, to discover communities, and to predict links at a high precision. Thus, the embeddings by the state-of-the-art approaches can only preserve part of the topological structure.


Sign in / Sign up

Export Citation Format

Share Document