scholarly journals Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys

2020 ◽  
Author(s):  
Jialin Hou ◽  
Stefan M. Sievert ◽  
Yinzhao Wang ◽  
Jeff S. Seewald ◽  
Vengadesh Perumal Natarajan ◽  
...  

Abstract Background: Deep-sea hydrothermal vents are highly productive biodiversity hotspots in the deep ocean supported by chemosynthetic microorganisms. Prominent features of these systems are sulfide chimneys emanating high temperature hydrothermal fluids. While several studies have investigated the microbial diversity in both active and inactive sulfide chimneys that have been extinct for up to thousands of years, little is known about chimneys that have ceased activity more recently, as well as the microbial succession occurring during the transition from active to inactive chimneys. Results: Genome-resolved metagenomics was applied to an active and a recently extinct (~7 years) sulfide chimney from the 9°-10°N hydrothermal vent field on the East Pacific Rise. Full-length 16S rRNA gene and a total of 173 high quality metagenome assembled genomes (MAGs) were retrieved for comparative analysis. In the active chimney (L-vent), sulfide- and/or hydrogen-oxidizing Campylobacteria and Aquificae with the potential for denitrification were identified as the dominant community members and primary producers, fixing carbon through the reductive tricarboxylic acid (rTCA) cycle. In contrast, the microbiome of the recently extinct chimney (M-vent) was largely composed of heterotrophs from various bacterial phyla, including Delta -/ Beta -/ Alphaproteobacteria and Bacteroidetes . Gammaproteobacteria were identified as the main primary producers, using the oxidation of metal sulfides and/or iron oxidation coupled to nitrate reduction to fix carbon through the Calvin-Benson-Bassham (CBB) cycle. Further analysis revealed a phylogenetically distinct Nitrospirae cluster that has the potential to oxidize sulfide minerals coupled to oxygen and/or nitrite reduction, as well as for sulfate reduction, and that might serve as an indicator for the early stages of chimneys after venting has ceased. Conclusions: This study sheds light on the composition, metabolic functions, and succession of microbial communities inhabiting deep-sea hydrothermal vent sulfide chimneys. Collectively, microbial succession during the life span of a chimney could be described to proceed from a “fluid-shaped” microbial community in newly formed and actively venting chimneys supported by the oxidation of reductants in the hydrothermal fluid to a “mineral-shaped” community supported by the oxidation of minerals after hydrothermal activity has ceased. Remarkably, the transition appears to occur within the first few years, after which the communities stay stable for thousands of years.

2020 ◽  
Author(s):  
Jialin Hou ◽  
Stefan M. Sievert ◽  
Yinzhao Wang ◽  
Jeff S. Seewald ◽  
Vengadesh Perumal Natarajan ◽  
...  

Abstract Background Deep-sea hydrothermal vents are highly productive, yet ephemeral biodiversity hotspots in the deep ocean supported by chemosynthetic microorganisms that play critical roles in the maintenance and development of these extreme ecosystems. While several studies have investigated the microbial diversity in both active and inactive sulfide chimneys that have been extinct for a long time, little is known about chimneys that ceased activity more recently as well as the microbial succession occurring during the transition from active to inactive chimneys. Results Genome-resolved metagenomics was applied to an active and a recently ceased (~7 years) sulfide chimney from the 9°50'N hydrothermal vent field on the East Pacific Rise. Full-length 16S rRNA gene and a total of 173 high quality metagenome assembled genomes (MAGs) were retrieved for comparative analysis. In the active chimney (EPR-L), sulfide- and/or hydrogen-oxidizing Campylobacteria and Aquificae with the potential for denitrification were identified as the dominant community members and primary producers, fixing carbon through the reductive tricarboxylic acid (rTCA) cycle. In contrast, the microbiome of the recently extinct chimney (EPR-M) was largely composed of heterotrophs from various bacterial phyla, including Delta -/ Beta -/ Alphaproteobacteria and Bacteroidetes . Gammaproteobacteria were identified as the main primary producers, using the oxidation of metal sulfides and/or iron oxidation coupled to nitrate reduction to fix carbon through the Calvin-Benson-Bassham (CBB) cycle. Further analysis revealed a phylogenetically distinct Nitrospirae cluster that has the potential to oxidize sulfide minerals coupled to oxygen and/or nitrite reduction, as well as for sulfate reduction, and that might serve as an indicator for the early stages of chimneys after venting has ceased. Conclusions This study shed light on the composition, metabolic functions, and succession of microbial communities in deep-sea hydrothermal vent chimneys. Collectively, microbial succession during the life span of a chimney could be described to go from a "fluid-shaped" microbial community in newly formed and actively venting chimneys to a "mineral-shaped" community after hydrothermal activity has ceased. Remarkably, the transition appears to happen early on, after which the communities stay stable for thousands of years.


2010 ◽  
Vol 60 (5) ◽  
pp. 1182-1186 ◽  
Author(s):  
Ileana Pérez-Rodríguez ◽  
Jessica Ricci ◽  
James W. Voordeckers ◽  
Valentin Starovoytov ◽  
Costantino Vetriani

A thermophilic, anaerobic, chemosynthetic bacterium, designated strain MB-1T, was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at  ° 50′ N 10 ° 17′ W. The cells were Gram-negative-staining rods, approximately 1–1.5 μm long and 0.3–0.5 μm wide. Strain MB-1T grew at 25–65 °C (optimum 55 °C), with 10–35 g NaCl l−1 (optimum 20 g l−1) and at pH 4.5–8.5 (optimum pH 7.0). Generation time under optimal conditions was 45.6 min. Growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Nitrate was used as the electron acceptor, with resulting production of ammonium. Thiosulfate, sulfur and selenate were also used as electron acceptors. No growth was observed in the presence of lactate, peptone or tryptone. Chemo-organotrophic growth occurred in the presence of acetate, formate, Casamino acids, sucrose, galactose and yeast extract under a N2/CO2 gas phase. The G+C content of the genomic DNA was 36.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Nautilia profundicola AmHT, Nautilia abyssi PH1209T and Nautilia lithotrophica 525T (95, 94 and 93 % sequence identity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Nautilia, Nautilia nitratireducens sp. nov. The type strain is MB-1T (=DSM 22087T =JCM 15746T).


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Wilbert Serrano ◽  
Raul M. Olaechea ◽  
Luis Cerpa ◽  
Jose Herrera ◽  
Aldo Indacochea

ABSTRACT Hydrothermal vent activity is often associated with submarine volcanism. Here, we investigated the presence of microorganisms related to hydrothermal activity in the Orca seamount. Data profiling of the 16S rRNA gene amplicon sequences revealed a diversity pattern dominated mainly by the phyla Proteobacteria, Acidobacteria, Planctomycetes, and Bacteroidetes.


Author(s):  
Dominique Boeuf ◽  
Bethanie R. Edwards ◽  
John M. Eppley ◽  
Sarah K. Hu ◽  
Kirsten E. Poff ◽  
...  

Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1252-1258 ◽  
Author(s):  
Gilberto E. Flores ◽  
Ryan C. Hunter ◽  
Yitai Liu ◽  
Anchelique Mets ◽  
Stefan Schouten ◽  
...  

Thirteen novel, obligately anaerobic, thermoacidophilic bacteria were isolated from deep-sea hydrothermal vent sites. Four of the strains, designated EP5-rT, KM1, Mar08-272rT and Mar08-368r, were selected for metabolic and physiological characterization. With the exception of strain EP5-rT, all strains were short rods that grew between 40 and 72 °C, with optimal growth at 60–65 °C. Strain EP5-rT was more ovoid in shape and grew between 45 and 75 °C, with optimum growth at 60 °C. The pH range for growth of all the isolates was between pH 3.5 and 5.5 (optimum pH 4.5 to 5.0). Strain Mar08-272rT could only grow up to pH 5.0. Elemental sulfur was required for heterotrophic growth on acetate, succinate, Casamino acids and yeast extract. Strains EP5-rT, Mar08-272rT and Mar08-368r could also use fumarate, while strains EP5-rT, KM1 and Mar08-272rT could also use propionate. All isolates were able to grow chemolithotrophically on H2, CO2, sulfur and vitamins. Phylogenetic analysis of 16S rRNA gene sequences placed all isolates within the family Desulfurellaceae of the class Deltaproteobacteria , with the closest cultured relative being Hippea maritima MH2 T (~95–98 % gene sequence similarity). Phylogenetic analysis also identified several isolates with at least one intervening sequence within the 16S rRNA gene. The genomic DNA G+C contents of strains EP5-rT, KM1, Mar08-272rT and Mar08-368r were 37.1, 42.0, 35.6 and 37.9 mol%, respectively. The new isolates differed most significantly from H. maritima MH2 T in their phylogenetic placement and in that they were obligate thermoacidophiles. Based on these phylogenetic and phenotypic properties, the following two novel species are proposed: Hippea jasoniae sp. nov. (type strain Mar08-272rT = DSM 24585T = OCM 985T) and Hippea alviniae sp. nov. (type strain EP5-rT = DSM 24586T = OCM 986T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1725-1733 ◽  
Author(s):  
Ken Takai ◽  
Masae Suzuki ◽  
Satoshi Nakagawa ◽  
Masayuki Miyazaki ◽  
Yohey Suzuki ◽  
...  

A novel mesophilic bacterium, strain GO25T, was isolated from a nest of hydrothermal vent polychaetes, Paralvinella sp., at the Iheya North field in the Mid-Okinawa Trough. Cells were motile short rods with a single polar flagellum. Growth was observed between 4 and 35 °C (optimum 30 °C; 13–16 h doubling time) and between pH 5.4 and 8.6 (optimum pH 6.1). The isolate was a facultatively anaerobic chemolithoautotroph capable of growth using molecular hydrogen, elemental sulfur or thiosulfate as the sole energy source, carbon dioxide as the sole carbon source, ammonium or nitrate as the sole nitrogen source and elemental sulfur, thiosulfate or yeast extract as the sole sulfur source. Strain GO25T represents the first deep-sea epsilonproteobacterium capable of growth by both hydrogen and sulfur oxidation. Nitrate or molecular oxygen (up to 10 % partial pressure) could serve as the sole electron acceptor to support growth. Metabolic products of nitrate reduction shifted in response to the electron donor provided. The G+C content of genomic DNA was 37.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate belonged to the genus Sulfurimonas and was most closely related to Sulfurimonas autotrophica OK10T (96.3 % sequence similarity). DNA–DNA hybridization demonstrated that the novel isolate could be differentiated genotypically from Sulfurimonas autotrophica OK10T. On the basis of the physiological and molecular properties of the novel isolate, the name Sulfurimonas paralvinellae sp. nov. is proposed, with strain GO25T (=JCM 13212T=DSM 17229T) as the type strain. Thiomicrospira denitrificans DSM 1251T (=ATCC 33889T) is phylogenetically associated with Sulfurimonas autotrophica OK10T and Sulfurimonas paralvinellae GO25T. Based on the phylogenetic relationship between Thiomicrospira denitrificans DSM 1251T, Sulfurimonas autotrophica OK10T and Sulfurimonas paralvinellae GO25T, we propose the reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. (type strain DSM 1251T=ATCC 33889T). In addition, an emended description of the genus Sulfurimonas is proposed.


2018 ◽  
Vol 115 (26) ◽  
pp. 6756-6761 ◽  
Author(s):  
Jesse McNichol ◽  
Hryhoriy Stryhanyuk ◽  
Sean P. Sylva ◽  
François Thomas ◽  
Niculina Musat ◽  
...  

Below the seafloor at deep-sea hot springs, mixing of geothermal fluids with seawater supports a potentially vast microbial ecosystem. Although the identity of subseafloor microorganisms is largely known, their effect on deep-ocean biogeochemical cycles cannot be predicted without quantitative measurements of their metabolic rates and growth efficiency. Here, we report on incubations of subseafloor fluids under in situ conditions that quantitatively constrain subseafloor primary productivity, biomass standing stock, and turnover time. Single-cell-based activity measurements and 16S rRNA-gene analysis showed thatCampylobacteriadominated carbon fixation and that oxygen concentration and temperature drove niche partitioning of closely related phylotypes. Our data reveal a very active subseafloor biosphere that fixes carbon at a rate of up to 321 μg C⋅L−1⋅d−1, turns over rapidly within tens of hours, rivals the productivity of chemosynthetic symbioses above the seafloor, and significantly influences deep-ocean biogeochemical cycling.


Author(s):  
M. L. Miroshnichenko ◽  
S. L'Haridon ◽  
P. Schumann ◽  
S. Spring ◽  
E. A. Bonch-Osmolovskaya ◽  
...  

A novel moderately thermophilic, microaerobic to anaerobic, chemolithoautotrophic bacterium, designated strain CRT, was isolated from a deep-sea hydrothermal vent site at 36°N on the Mid-Atlantic Ridge. Cells were Gram-negative, non-motile rods. The organism grew at 45–65 °C and pH 6·5–7·4, with optimum growth at 55 °C and pH 6·9–7·1. The NaCl range for growth was 5–50 g l−1 (optimum 30 g l−1). Strain CRT was an obligate chemolithoautotroph, growing with H2 as energy source, sulfur, nitrate or oxygen as electron acceptors and CO2 as carbon source. Hydrogen sulfide and ammonium were the respective products of sulfur and nitrate reduction. The G+C content of the genomic DNA was 32·1 mol%. Based on 16S rRNA gene sequence analysis, this organism was most closely related to Caminibacter hydrogeniphilus (94·9 % similarity). On the basis of phenotypic and phylogenetic data, it is proposed that the isolate represents a novel species, Caminibacter profundus sp. nov. The type strain is CRT (=DSM 15016T=JCM 11957T). The phylogenetic data also correlate well with the significant phenotypic differences between the lineage encompassing the genera Nautilia and Caminibacter and other members of the class ‘Epsilonproteobacteria’. The lineage encompassing the genera Nautilia and Caminibacter is therefore proposed as a new order, Nautiliales ord. nov., represented by a single family, Nautiliaceae fam. nov.


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1144-1150 ◽  
Author(s):  
Ashley Grosche ◽  
Hema Sekaran ◽  
Ileana Pérez-Rodríguez ◽  
Valentin Starovoytov ◽  
Costantino Vetriani

A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain TB-6T, was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at 9° N. The cells were Gram-staining-negative and rod-shaped with one or more polar flagella. Cell size was approximately 1–1.5 µm in length and 0.5 µm in width. Strain TB-6T grew between 45 and 70 °C (optimum 55–60 °C), 0 and 35 g NaCl l−1 (optimum 20–30 g l−1) and pH 4.5 and 7.5 (optimum pH 5.5–6.0). Generation time under optimal conditions was 2 h. Growth of strain TB-6T occurred with H2 as the energy source, CO2 as the carbon source and nitrate or sulfur as electron acceptors, with formation of ammonium or hydrogen sulfide, respectively. Acetate, (+)-d-glucose, Casamino acids, sucrose and yeast extract were not used as carbon and energy sources. Inhibition of growth occurred in the presence of lactate, peptone and tryptone under a H2/CO2 (80 : 20; 200 kPa) gas phase. Thiosulfate, sulfite, arsenate, selenate and oxygen were not used as electron acceptors. The G+C content of the genomic DNA was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene of strain TB-6T showed that this organism branched separately from the three most closely related genera, Caminibacter , Nautilia and Lebetimonas , within the family Nautiliaceae . Strain TB-6T contained several unique fatty acids in comparison with other members of the family Nautiliaceae . Based on experimental evidence, it is proposed that the organism represents a novel species and genus within the family Nautiliaceae , Cetia pacifica, gen. nov., sp. nov. The type strain is TB-6T ( = DSM 27783T = JCM 19563T).


2005 ◽  
Vol 55 (2) ◽  
pp. 773-779 ◽  
Author(s):  
James W. Voordeckers ◽  
Valentin Starovoytov ◽  
Costantino Vetriani

A thermophilic, anaerobic, chemolithoautotrophic bacterium, designated strain TB-2T, was isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge at 36° 14′ N 33° 54′ W. The cells were Gram-negative rods approximately 1·5 μm in length and 0·75 μm in width. Strain TB-2T grew between 45 and 70 °C (optimum 55 °C), 10 and 40 g NaCl l−1 (optimum 30 g l−1) and pH 4·5 and 7·5 (optimum pH 5·5). Generation time under optimal conditions was 50 min. Growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Nitrate or sulfur was used as the electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. Oxygen, thiosulfate, sulfite, selenate and arsenate were not used as electron acceptors. Growth was inhibited by the presence of acetate, lactate, formate and peptone. The G+C content of the genomic DNA was 25·6 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Caminibacter hydrogeniphilus and Caminibacter profundus (95·9 and 96·3 % similarity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Caminibacter, Caminibacter mediatlanticus sp. nov. The type strain is TB-2T (=DSM 16658T=JCM 12641T).


Sign in / Sign up

Export Citation Format

Share Document