scholarly journals Continued functions and perturbation series: Simple tools for convergence of diverging series in $O(n)$-symmetric $\phi^4$ field theory at weak coupling limit

Author(s):  
Venkat Abhignan ◽  
Sankaranarayanan R.

Abstract We determine universal critical exponents that describe the continuous phase transitions in different dimensions of space. We use continued functions without any external unknown parameters to obtain analytic continuation for the recently derived 7-loop $\epsilon$ expansion from $O(n)$-symmetric $\phi^4$ field theory. Employing a new blended continued function, we obtain critical exponent $\alpha=-0.01211$ for the phase transition of superfluid helium which matches closely with the most accurate experimental value. This result addresses the long-standing discrepancy between the theoretical predictions and precise experimental result of $O(2)$ $\phi^4$ model known as "$\lambda$-point specific heat experimental anomaly". Further we have also examined the applicability of such continued functions in other examples of field theories.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Renato Maria Prisco ◽  
Francesco Tramontano

Abstract We propose a novel local subtraction scheme for the computation of Next-to-Leading Order contributions to theoretical predictions for scattering processes in perturbative Quantum Field Theory. With respect to well known schemes proposed since many years that build upon the analysis of the real radiation matrix elements, our construction starts from the loop diagrams and exploits their dual representation. Our scheme implements exact phase space factorization, handles final state as well as initial state singularities and is suitable for both massless and massive particles.


2015 ◽  
Vol 233-234 ◽  
pp. 331-334
Author(s):  
Anna Yu. Solovyova ◽  
Ekaterina A. Elfimova

The thermodynamic properties of a ferrofluid modeled by a bidisperse system of dipolar hard spheres in the absence of external magnetic field are investigated using theory and simulations. The theory is based on the virial expansion of the Helmholtz free energy in terms of particle volume concentration. Comparison between the theoretical predictions and simulation data shows a great agreement of the results.


10.37236/589 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Oliver Schnetz

We consider the number $\bar N(q)$ of points in the projective complement of graph hypersurfaces over $\mathbb{F}_q$ and show that the smallest graphs with non-polynomial $\bar N(q)$ have 14 edges. We give six examples which fall into two classes. One class has an exceptional prime 2 whereas in the other class $\bar N(q)$ depends on the number of cube roots of unity in $\mathbb{F}_q$. At graphs with 16 edges we find examples where $\bar N(q)$ is given by a polynomial in $q$ plus $q^2$ times the number of points in the projective complement of a singular K3 in $\mathbb{P}^3$. In the second part of the paper we show that applying momentum space Feynman-rules over $\mathbb{F}_q$ lets the perturbation series terminate for renormalizable and non-renormalizable bosonic quantum field theories.


1971 ◽  
Vol 44 (5) ◽  
pp. 1380-1390
Author(s):  
J. M. Charrier ◽  
A. N. Gent

Abstract When a thin-walled rubber tube containing an incompressible fluid is compressed between two parallel plates the internal pressure rise depends on the restraints in the contact regions. When there is no friction in the contact zone the pressure rise is lower than when slip is prevented, so that the tube, regarded as a spring, has a compression stiffness which depends on the frictional conditions. The same considerations apply to the inflation of a tube between fixed parallel plates. In this case unstable inflation sets in at a critical pressure when the interfaces are frictionless; the tube develops a pronounced bulge when this pressure is approached. Simple theoretical relations are derived for the internal pressure and compressive force for both these deformations, and for both boundary conditions, assuming that the rubber is neo-Hookean in elastic behavior. Experimental measurements on tubes of different dimensions are shown to be in reasonably good quantitative agreement with these theoretical predictions in all cases.


2017 ◽  
Vol 27 (10) ◽  
pp. 1963-1992 ◽  
Author(s):  
J.-B. Bru ◽  
W. de Siqueira Pedra

Efficiently bounding large determinants is an essential step in non-relativistic constructive quantum field theory to prove the absolute convergence of the perturbation expansion of correlation functions in terms of powers of the strength [Formula: see text] of the interparticle interaction. We provide, for large determinants of fermionic covariances, sharp bounds which hold for all (bounded and unbounded, the latter not being limited to semibounded) one-particle Hamiltonians. We find the smallest universal determinant bound to be exactly [Formula: see text]. In particular, the convergence of perturbation series at [Formula: see text] of any fermionic quantum field theory is ensured if the matrix entries (with respect to some fixed orthonormal basis) of the covariance and the interparticle interaction decay sufficiently fast. Our proofs use Hölder inequalities for general non-commutative [Formula: see text]-spaces derived by Araki and Masuda [Positive cones and [Formula: see text]-spaces for von Neumann algebras, Publ. RIMS[Formula: see text] Kyoto Univ. 18 (1982) 339–411].


2011 ◽  
Vol 20 (10) ◽  
pp. 2217-2228 ◽  
Author(s):  
B. K. SAHU ◽  
M. BHUYAN ◽  
S. MAHAPATRO ◽  
S. K. PATRA

We study the binding energy, root-mean-square radius and quadrupole deformation parameter for the synthesized superheavy element Z = 115, within the formalism of relativistic mean field theory. The calculation is dones for various isotopes of Z = 115 element, starting from A = 272 to A = 292. A systematic comparison between the binding energies and experimental data is made.The calculated binding energies are in good agreement with experimental result. The results show the prolate deformation for the ground state of these nuclei. The most stable isotope is found to be 282115 nucleus (N = 167) in the isotopic chain. We have also studied Qα and Tα for the α-decay chains of 287, 288115.


1989 ◽  
Vol 04 (18) ◽  
pp. 4977-4990 ◽  
Author(s):  
G. V. EFIMOV

Two models of scalar fields with the interaction Lagrangians gφ4 and [Formula: see text] are considered in ℝ2. There are phase transitions in these models for a certain g = gc. It is shown that the spontaneous symmetry breaking takes place for g > gc. The description of the two phases for g < gc and g > gc is given. The effective coupling constants in perturbation series are less than unity for both the phases so that these models describe the systems with weak coupling. In the second model the "Goldstone" particles have nonzero masses in the phase g > gc.


1974 ◽  
Vol 9 (2) ◽  
pp. 102-108 ◽  
Author(s):  
R Sowerby ◽  
W Johnson

Anisotropic slip-line fields have been developed in the flanges of drawn cups and used to predict the location of the ears and hollows at the onset of the drawing operation. The analysis is based on Hill's plane-strain theory of anisotropic metals. The material anisotropy is characterized by a lumped anisotropic parameter c. Deep-drawing tests were performed on circular blanks cut from anisotropic sheet and the actual deformation mode of particles in the flange was compared with the theoretical predictions. The correlation was found to be favourable.


Sign in / Sign up

Export Citation Format

Share Document