scholarly journals Reuse of Treated Wastewater in the Manufacture of Concrete: Major Challenge of Environmental Preservation

Author(s):  
Fatima Zahra Bouaich ◽  
Walid Maherzi ◽  
Fadoua Elhajjaji ◽  
Nor-Edine Abriak ◽  
Mahfoud Ben Zarzour ◽  
...  

Abstract This work concerns the reuse of treated wastewater from Er-Rachidia wastewater treatment plant (WWTP) in the mixing of ordinary B25 concrete, in order to reduce the overexploitation of groundwater, avoid its discharge into watercourses and reduce the risk of environmental pollution due to its mineral and organic matter load. In this respect, Tree types of mixing water were used in this study: Drinking Water (DW), Groundwater (GW) and Treated Wastewater (TW). The results recorded for each type of mixing water, in the fresh and hardened state of concretes, are then compared with the requirements of the standards. The obtained results show that the treated wastewater does not have any adverse effect upon the quality of the concrete; it has shown an improvement of the mechanical resistance from the first stage, a similar density, setting time and porosity and a slight decrease of the workability compared with the control concrete. A One-way analysis of variance (ANOVA) at the 5% significance level indicated no significant difference between concrete samples produced and cured with treated wastewater and control samples at ages 7, 14, 28 and 90 days. Throughout this study the substitution of drinking water by treated wastewater will help to minimize the need for its use. Additionally, it saves drinking water for consumption and makes wastewater treatment plants more economically attractive, together with other similar goals for sustainable development.

2019 ◽  
Vol 24 (1) ◽  
pp. 135-163
Author(s):  
Jader Martínez Girón ◽  
Jenny Vanessa Marín-Rivera ◽  
Mauricio Quintero-Angel

Population growth and urbanization pose a greater pressure for the treatment of drinking water. Additionally, different treatment units, such as decanters and filters, accumulate high concentrations of iron (Fe) and manganese (Mn), which in many cases can be discharged into the environment without any treatment when maintenance is performed. Therefore, this paper evaluates the effectiveness of vertical subsurface wetlands for Fe and Mn removal from wastewater in drinking water treatment plants, taking a pilot scale wetland with an ascending gravel bed with two types of plants: C. esculenta and P. australis in El Hormiguero (Cali, Colombia), as an example. The pilot system had three upstream vertical wetlands, two of them planted and the third one without a plant used as a control. The wetlands were arranged in parallel and each formed by three gravel beds of different diameter. The results showed no significant difference for the percentage of removal in the three wetlands for turbidity (98 %), Fe (90 %), dissolved Fe (97 %) and Mn (98 %). The dissolved oxygen presented a significant difference between the planted wetlands and the control. C. esculenta had the highest concentration of Fe in the root with (103.5 ± 20.8) µg/g ; while P. australis had the highest average of Fe concentrations in leaves and stem with (45.7 ± 24) µg/g and (41.4 ± 9.1) µg/g, respectively. It is concluded that subsurface wetlands can be an interesting alternative for wastewater treatment in the maintenance of drinking water treatment plants. However, more research is needed for the use of vegetation or some technologies for the removal or reduction of the pollutant load in wetlands, since each drinking water treatment plant will require a treatment system for wastewater, which in turn requires a wastewater treatment system as well.


2012 ◽  
Vol 78 (18) ◽  
pp. 6643-6646 ◽  
Author(s):  
Vincenza Romano ◽  
Vincenzo Pasquale ◽  
Karel Krovacek ◽  
Federica Mauri ◽  
Antonella Demarta ◽  
...  

ABSTRACTThe occurrence ofClostridium difficilein nine wastewater treatment plants in the Ticino Canton (southern Switzerland) was investigated. The samples were collected from raw sewage influents and from treated effluents. Forty-seven out of 55 characterizedC. difficilestrains belonged to 13 different reference PCR ribotypes (009, 010, 014, 015, 039, 052, 053, 066, 070, 078, 101, 106, and 117), whereas 8 strains did not match any of those available in our libraries. The most frequently isolated ribotype (40%) was 078, isolated from six wastewater treatment plants, whereas ribotype 066, a toxigenic emerging ribotype isolated from patients admitted to hospitals in Europe and Switzerland, was isolated from the outgoing effluent of one plant. The majority of the isolates (85%) were toxigenic. Forty-nine percent of them produced toxin A, toxin B, and the binary toxin (toxigenic profile A+B+CDT+), whereas 51% showed the profile A+B+CDT−. Interestingly, eight ribotypes (010, 014, 015, 039, 066, 078, 101, and 106) were among the riboprofiles isolated from symptomatic patients admitted to the hospitals of the Ticino Canton in 2010. Despite the limitation of sampling, this study highlights that toxigenic ribotypes ofC. difficileinvolved in human infections may occur in both incoming and outgoing biological wastewater treatment plants. Such a finding raises concern about the possible contamination of water bodies that receive wastewater treatment plant effluents and about the safe reuse of treated wastewater.


Author(s):  
N. J. Gulamussen ◽  
A. M. Arsénio ◽  
N. P. Matsinhe ◽  
R. S. Manjate ◽  
L. C. Rietveld

Abstract Experiments were conducted to evaluate the possibilities of using treated wastewater for the production of unreinforced concrete blocks. Compressive strength, water absorption and morphology tests of concrete blocks, produced from different makeups of mixing water, drinking water, drinking water spiked with ammonium and phosphate, and the effluent of the city's wastewater treatment plant, were evaluated. Results showed that the compressive strength of blocks manufactured using treated wastewater was as high as of the blocks produced using drinking water. Ammonium, phosphate and chlorine were found not to have a negative effect on the strength of the blocks. Water absorption tests confirmed the results of the compressive strength, as lower humidity was found in cases of higher strength. In the process of cement hydration, crystals of calcium silicate and calcium hydroxide were observed by morphology tests. From the variability in the results, it could be concluded that the quality of the mixing water was not the only factor that influenced the strength of the unreinforced concrete blocks. The observed differences in strength could, e.g. also be attributed to the manufacturing process.


2012 ◽  
Vol 78 (9) ◽  
pp. 3400-3406 ◽  
Author(s):  
John Flannery ◽  
Sinéad Keaveney ◽  
Paulina Rajko-Nenow ◽  
Vincent O'Flaherty ◽  
William Doré

ABSTRACTThe concentrations ofEscherichia coli, F-specific RNA bacteriophage (FRNA bacteriophage), and norovirus genogroup I (NoV GI) and norovirus genogroup II (NoV GII) in wastewater were monitored weekly over a 1-year period at a wastewater treatment plant (WWTP) providing secondary wastewater treatment. A total of 49 samples of influent wastewater and wastewater that had been treated by primary and secondary wastewater treatment processes (primary and secondary treated wastewater) were analyzed. Using a real-time reverse transcription-quantitative PCR (RT-qPCR), the mean NoV GI and NoV GII concentrations detected in effluent wastewater were 2.53 and 2.63 log10virus genome copies 100 ml−1, respectively. The mean NoV concentrations in wastewater during the winter period (January to March) (n= 12) were 0.82 (NoV GI) and 1.41 (NoV GII) log units greater than the mean concentrations for the rest of the year (n= 37). The mean reductions of NoV GI and GII during treatment were 0.80 and 0.92 log units, respectively, with no significant difference detected in the extent of NoV reductions due to season. No seasonal trend was detected in the concentrations ofE. colior FRNA bacteriophage in wastewater influent and showed mean reductions of 1.49 and 2.13 log units, respectively. Mean concentrations of 3.56 and 3.72 log10virus genome copies 100 ml−1for NoV GI and GII, respectively, were detected in oysters sampled adjacent to the WWTP discharge. A strong seasonal trend was observed, and the concentrations of NoV GI and GII detected in oysters were correlated with concentrations detected in the wastewater effluent. No seasonal difference was detected in concentrations ofE. colior FRNA bacteriophage detected in oysters.


1995 ◽  
Vol 31 (7) ◽  
pp. 201-212 ◽  
Author(s):  
H. Løkkegaard Bjerre ◽  
T. Hvitved-Jacobsen ◽  
B. Teichgräber ◽  
D. te Heesen

The Emscher river in the Ruhr district, Germany, is at present acting as a large wastewater collector receiving untreated and mechanically treated wastewater. Before the Emscher flows into the river Rhine, treatment takes place in a biological wastewater treatment plant. The transformations of the organic matter in the Emscher affect the river catchment, the subsequent treatment and the river quality. This paper focuses on evaluation of methods for quantification of the microbial transformations of wastewater in the Emscher with emphasis on characterization of wastewater quality changes in terms of biodegradability of organic matter and viable biomass. The characterization is based on methods taken from the activated sludge process in wastewater treatment. Methods were evaluated on the basis of laboratory investigations of water samples from the Emscher. Incubation in batch reactors under aerobic, anoxic and anaerobic conditions were made and a case study was performed. The methods described will be used in an intensive study of wastewater transformations in the Emscher river. This study will be a basis for future investigations of wastewater quality changes in the Emscher.


2006 ◽  
Vol 54 (10) ◽  
pp. 39-45
Author(s):  
A. Vargas ◽  
D. González ◽  
A. Estival ◽  
G. Buitrón

This work presents a comparison of two inocula used for the acclimation of two anaerobic-aerobic sequencing batch bioreactors used for toxic wastewater treatment. The bioreactors were acclimated with different types of sludge: one coming from an anaerobic wastewater treatment plant and the other one from a conventional aerobic activated sludge plant. The model toxic compound was p-nitrophenol, which is reduced to p-aminophenol during the initial anaerobic phase of the reaction, and later mineralized during a posterior aerated reaction phase. Biodegradation of the compounds was monitored using UV/Vis spectrophotometry. After acclimation stabilization of the sludge and of the process was also monitored. Results show that there is no significant difference in acclimation times and stability of the process between the two employed inocula, and thus an originally anaerobic inoculum presents no apparent advantage over a more easily accessible aerobic one.


2001 ◽  
Vol 43 (2) ◽  
pp. 91-99 ◽  
Author(s):  
T. Iwane ◽  
T. Urase ◽  
K. Yamamoto

Escherichia coli and coliform group bacteria resistant to seven antibiotics were investigated in the Tama River, a typical urbanized river in Tokyo, Japan, and at a wastewater treatment plant located on the river. The percentages of antibiotic resistance in the wastewater effluent were, in most cases, higher than the percentages in the river water, which were observed increasing downstream. Since the possible increase in the percentages in the river was associated with treated wastewater discharges, it was concluded that the river, which is contaminated by treated wastewater with many kinds of pollutants, is also contaminated with antibiotic resistant coliform group bacteria and E.coli. The percentages of resistant bacteria in the wastewater treatment plant were mostly observed decreasing during the treatment process. It was also demonstrated that the percentages of resistance in raw sewage are significantly higher than those in the river water and that the wastewater treatment process investigated in this study works against most of resistant bacteria in sewage.


2017 ◽  
Vol 77 (2) ◽  
pp. 337-345 ◽  
Author(s):  
I. Brückner ◽  
K. Kirchner ◽  
Y. Müller ◽  
S. Schiwy ◽  
K. Klaer ◽  
...  

Abstract The project DemO3AC (demonstration of large-scale wastewater ozonation at the Aachen-Soers wastewater treatment plant, Germany) of the Eifel-Rur Waterboard contains the construction of a large-scale ozonation plant for advanced treatment of the entire 25 million m³/yr of wastewater passing through its largest wastewater treatment plant (WWTP). In dry periods, up to 70% of the receiving water consists of treated wastewater. Thus, it is expected that effects of ozonation on downstream water biocoenosis will become observable. Extensive monitoring of receiving water and the WWTP shows a severe pollution with micropollutants (already prior to WWTP inlet). (Eco-)Toxicological investigations showed increased toxicity at the inlet of the WWTP for all assays. However, endocrine-disrupting potential was also present at other sampling points at the WWTP and in the river and could not be eliminated sufficiently by the WWTP. Total cell counts at the WWTP are slightly below average. Investigations of antibiotic resistances show no increase after the WWTP outlet in the river. However, cells carrying antibiotic-resistant genes seem to be more stress resistant in general. Comparing investigations after implementation of ozonation should lead to an approximation of the correlation between micropollutants and water quality/biocoenosis and the effects that ozonation has on this matter.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2764
Author(s):  
Argyro Plevri ◽  
Klio Monokrousou ◽  
Christos Makropoulos ◽  
Christos Lioumis ◽  
Nikolaos Tazes ◽  
...  

Water reuse and recycling is gaining momentum as a way to improve the circularity of cities, while recognizing the central role of water within a circular economy (CE) context. However, such interventions often depend on the location of wastewater treatment plants and the treatment technologies installed in their premises, while relying on an expensive piped network to ensure that treated wastewater gets transported from the treatment plant to the point of demand. Thus, the penetration level of treated wastewater as a source of non-potable supply in dense urban environments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a source of treated wastewater, as part of a larger and more holistic configuration that examines all three ‘streams’ associated with water in CE: water, energy and materials. The application area is the Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly and reuse at the point of demand even in urban environments with limited space. The unit consists of a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise the holistic approach and circularity of the whole configuration. The SM technology demonstrates flexibility, scalability and replicability, which are important characteristics for innovation uptake within the emerging CE context and market.


Sign in / Sign up

Export Citation Format

Share Document