scholarly journals Use of reclaimed water for unreinforced concrete block production for the self-construction of houses

Author(s):  
N. J. Gulamussen ◽  
A. M. Arsénio ◽  
N. P. Matsinhe ◽  
R. S. Manjate ◽  
L. C. Rietveld

Abstract Experiments were conducted to evaluate the possibilities of using treated wastewater for the production of unreinforced concrete blocks. Compressive strength, water absorption and morphology tests of concrete blocks, produced from different makeups of mixing water, drinking water, drinking water spiked with ammonium and phosphate, and the effluent of the city's wastewater treatment plant, were evaluated. Results showed that the compressive strength of blocks manufactured using treated wastewater was as high as of the blocks produced using drinking water. Ammonium, phosphate and chlorine were found not to have a negative effect on the strength of the blocks. Water absorption tests confirmed the results of the compressive strength, as lower humidity was found in cases of higher strength. In the process of cement hydration, crystals of calcium silicate and calcium hydroxide were observed by morphology tests. From the variability in the results, it could be concluded that the quality of the mixing water was not the only factor that influenced the strength of the unreinforced concrete blocks. The observed differences in strength could, e.g. also be attributed to the manufacturing process.

Author(s):  
Sawitri Pianchaiyaphum ◽  
◽  
Suphaphat Kwonpongsagoon ◽  
Premrudee Kanchanapiya ◽  
Chakrapan Tuakta

The process of copper recovery from waste printed circuit board has generated large amounts of non-metallic fraction (NMF) residue. In this research, the residue was recycled as a substitute for fine aggregates at 0%, 5%, 10%, 15%, and 20% to produce interlocking concrete blocks. Properties of the interlocking concrete blocks produced in this study, such as density, water absorption, compressive strength, were firstly examined and the selected mixes were further evaluated for the heavy metal leachability. The results indicated that the NMF residue affected physical, mechanical and chemical properties of NMF interlocking concrete block samples. When increasing NMF contents, the density and compressive strength decreased, while the water absorption increased. In the leachability results, the leaching of Cu decreased as cement content increased, and its concentration level was well below the Soluble Threshold Limit Concentration limit (STLC). Thus, the high content of Cu and all other metals embedded in the NMF material were immobilized in the interlocking concrete block specimens.


2021 ◽  
Author(s):  
Fatima Zahra Bouaich ◽  
Walid Maherzi ◽  
Fadoua Elhajjaji ◽  
Nor-Edine Abriak ◽  
Mahfoud Ben Zarzour ◽  
...  

Abstract This work concerns the reuse of treated wastewater from Er-Rachidia wastewater treatment plant (WWTP) in the mixing of ordinary B25 concrete, in order to reduce the overexploitation of groundwater, avoid its discharge into watercourses and reduce the risk of environmental pollution due to its mineral and organic matter load. In this respect, Tree types of mixing water were used in this study: Drinking Water (DW), Groundwater (GW) and Treated Wastewater (TW). The results recorded for each type of mixing water, in the fresh and hardened state of concretes, are then compared with the requirements of the standards. The obtained results show that the treated wastewater does not have any adverse effect upon the quality of the concrete; it has shown an improvement of the mechanical resistance from the first stage, a similar density, setting time and porosity and a slight decrease of the workability compared with the control concrete. A One-way analysis of variance (ANOVA) at the 5% significance level indicated no significant difference between concrete samples produced and cured with treated wastewater and control samples at ages 7, 14, 28 and 90 days. Throughout this study the substitution of drinking water by treated wastewater will help to minimize the need for its use. Additionally, it saves drinking water for consumption and makes wastewater treatment plants more economically attractive, together with other similar goals for sustainable development.


2014 ◽  
Vol 633 ◽  
pp. 299-302 ◽  
Author(s):  
Peng Fei Peng ◽  
Xian Ming Qin ◽  
Yu Sheng Wu

The masonries with a square of 2m×3m of 3 different aerated concrete blocks were built respectively, and plastered with plastering mortar. The shrinkage-cracking property and other performances of different aerated concrete masonries were studied in natural condition. The results showed that, there were less cracks and smaller crack width in the masonry of aerated concrete with low water absorption, the condition of aerated concrete cracking can be improved by plastering with plastering mortar; the shrinkage of aerated concrete block masonry with low water absorption is smaller, the shrinkage of aerated concrete masonry plastered by special plastering mortar is smaller.


2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


2019 ◽  
Vol 280 ◽  
pp. 04002
Author(s):  
Setya Winarno

This research presents a comparative cost and strength analysis of rice husk concrete block which is aimed at reducing the cost of concrete production and emphasizing environmentally and friendly sustainable materials. Concrete block materials consist of cement, filler, and rice husk. Tests were performed to compare the strength and cost of seven cement rice husk weight ratios designated ranging from 0.67 to 2.00 with constant water cement ration of 0.4. Samples have been tested for 28-day strength. The analysis of the results has showed that the higher proportions of rice husk correspond to decreased strength dan cost polynomially. At 134% proportion of rice husk, it is optimum value for rice husk concrete block. In this point, the compressive strength satisfies the standard. Also, water absorption of 16,04% justifies the maximum standard. Overall, the cost of 134% RH concrete is Rp 511,809 per m3 which is 42.5% cheaper than normal concrete block.


2001 ◽  
Vol 44 (10) ◽  
pp. 273-277 ◽  
Author(s):  
C. Huang ◽  
J.R. Pan ◽  
K.-D. Sun ◽  
C.-T. Liaw

In this study, an attempt was made to use water treatment plant (WTP) sludge and dam sediment as raw materials for brick-making through the sintering process. The sinter of dam sediment fired at 1,050°C had a less than 15% ratio water absorption, and its compressive strength and bulk density met the Chinese National Standard (CNS) for first level brick. The WTP sludge sinter made under the same operating condition exhibited higher water absorption, larger shrinkage, but poorer compressive strength. When fired at 1,100°C, the shrinkage of the WTP sludge sinter was as high as 45%, although its compressive strength and water absorption of WTP sludge brick still met the standard for the first level brick. To reuse WTP sludge in an economical way, mixtures of various proportions of WTP sludge to dam sediment are used as raw materials. A satisfactory result was achieved when the ratio of the WTP sludge was less than 20% of the mixture. Results of tests indicated that the sinter of dam sediments which are fired at a temperature of 1000~1100°C has reached the requirement for tile brick.


An attempt has been made in this paper to study the effect on the mechanical properties of the concrete and hollow concrete block when different types of fibres were added to the mix. The two different types of fibres added include Steel fibres with hooked end and of length 60mm at five different fibre ratios of 2.5%, 2.75%, 3.0%, 3.25% and 3.5% and Nylon fibres having a length of 18mm at the content of 0.5%, 0.75%, 1.0%, 1.25% and 1.50%. The concept of fibre hybridization was also analyzed and the effect was studied by preparing concrete mix with various percentage combinations of steel and nylon fibres at a total fibre ratio of 3% by weight of cement. The investigation focused on finding the optimum values of fibres to be added and also carried out the compressive strength and tensile strength of concrete with and without fibres. The compressive strength of hollow concrete blocks made with and without fibres was also analyzed. The samples of concrete and hollow concrete blocks were cast and immersed in water for a curing period of 28 days. The results on strength of fibre added concrete and hollow concrete block obtained was compared with the control mix result and the study concludes that the steel fibre and nylon fibre added concrete and hollow concrete block showed an improvement in the mechanical properties for each fibre ratio considered. Out of the various combinations of steel and nylon fibre tried, the best compressive strength improvement was exhibited by the concrete mix with 3% of the steel fibre without any addition of nylon fibres while the best tensile strength improvement was shown by the concrete mix with 2.25% of steel fibre and 0.75% of nylon fibre.


Author(s):  
Muhammad Rizwan

This research work aims to investigate experimentally the mechanical properties of solid concrete blocks as an individual unit and assembly (block masonry) employing different mortar mix ratios. The material properties of the concrete block unit, such as compressive strength and unit weight were explored by taking three samples from the four local factories. The block masonry assemblages were subjected to various load patterns for the evaluation of compressive strength, diagonal tensile strength and shear strength. For the bond, four types of mortars i.e., cement – sand (1:4), cement – sand (1:8), cement – sand – khaka (1:2:2) and cement – sand – khaka (1:4:4) were used in the joints of concrete block masonry assemblages. (Khaka is a by-product formed in the stone crushing process). For each type of mortar, three samples of block masonry were fabricated for compressive strength, shear strength and diagonal tensile strength, and tested in the laboratory. It is observed that the replacement of sand by khaka enhanced the mechanical properties of masonry.


2018 ◽  
Vol 11 (4) ◽  
pp. 652-672
Author(s):  
W. C. SANTIAGO ◽  
A. T. BECK

Abstract This paper presents a study of the conformity of structural concrete blocks manufactured and used in masonry construction in Brazil. It is based on compressive strength tests, on dimensional analysis and absorption tests of over six thousand samples from three classes (A, B and C) and two modular sizes (M-15 and M-20). National results show that blocks tend to have an estimated compressive strength higher than specified, except blocks from class A. Regional results show that blocks manufactured in the northeast (NE) are consistently non-conforming, for all block classes. The study also shows that dimensional variations and absorption tests results are within code tolerances.


2015 ◽  
Vol 77 (32) ◽  
Author(s):  
Mohd Asri Md Nor ◽  
Alia Syafiqah Abdul Hamed ◽  
Faisal Hj Ali ◽  
Ong Keat Khim

Every year, large quantity of water treatment sludge (WTS) is produced from water treatment plant in Malaysia. Sanitary landfill disposal of sludge at authorized sites is the common practice in Malaysia. However, searching the suitable site for landfill is the major problem as the amount of sludge produced keeps on increasing. Reuse of the sludge could be an alternative to disposal. This study investigated the reusability of WTS as brick making material. The performance of clay-WTS bricks produced by mixing clay with different percentages of WTS with increments of 20% from 0% up to 100% was investigated. Each molded brick with optimum moisture content was pressed under constant pressure, oven-dried at 100˚C for 24 hours followed by heating at 600˚C for 2 hours and 1000˚C for 3 hours. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis were used to characterize clay, WTS and clay-WTS bricks.  The performance of the bricks were evaluated with firing shrinkage, loss on ignition (LOI), water absorption, bulk density, and compressive strength tests. Increasing the sludge content results in a decrease of brick firing shrinkage, and increase of water absorption and compressive strength. The results revealed that the brick with 100% by weight of sludge could generate the highest compressive strength of 17.123N/mm2. It can be concluded that the bricks with 20 to 100% of water treatment sludge comply with the Malaysian Standard MS7.6:1972, which can fulfill the general requirement for usage of clay bricks in wall construction.


Sign in / Sign up

Export Citation Format

Share Document