scholarly journals Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line

2020 ◽  
Author(s):  
Meng Zhang ◽  
Ji Liu ◽  
Qiang Ma ◽  
Yuan Qin ◽  
Hantao Wang ◽  
...  

Abstract Background: Male sterility is a simple and efficient pollination control system that is widely exploited in hybrid breeding. In upland cotton, CCRI9106, a photosensitive genetic male sterile (PGMS) mutant isolated from CCRI040029, was reported of great advantages to cotton heterosis. However, little information concerning the male sterility of CCRI9106 is known. Here, comparative transcriptome analysis of CCRI9106 (the mutant, MT) and CCRI040029 (the wild type, WT) anthers in Anyang (long-day, male sterile condition to CCRI9106) was performed to reveal the potential male sterile mechanism of CCRI9106.Results: Light and electron microscopy revealed that the male sterility phenotype of MT was mainly attributed to irregularly exine, lacking tryphine and immature anther cuticle. Based on the cytological characteristics of MT anthers, anther RNA libraries (18 in total) of tetrad (TTP), late uninucleate (lUNP) and binucleate (BNP) stages in MT and WT were constructed for transcriptomic analysis, therefore revealing a total of 870,4 differentially expressed genes (DEGs). By performing gene expression pattern analysis and protein-protein interaction (PPI) networks construction, we found down-regulation of DEGs, which enriched by the lipid biosynthetic process and the synthesis pathways of several types of secondary metabolites such as terpenoids, flavonoids and steroids, may crucial to the male sterility phenotype of MT, and resulting in the defects of anther cuticle and tryphine, even the irregularly exine. Furthermore, several lipid-related genes together with ABA-related genes and MYB transcription factors were identified as hub genes via weighted gene co-expression network analysis (WGCNA). Additionally, the ABA content of MT anthers was reduced across all stages when compared with WT anthers. At last, genes related to the formation of anther cuticle and tryphine could activated in MT under short-day condition.Conclusions: We propose that the down-regulation of genes related to the assembly of anther cuticle and tryphine may lead to the male sterile phenotype of MT, and MYB transcription factors together with ABA played key regulatory roles in these processes. The conversion of fertility in different photoperiods may closely relate to the functional expression of these genes. These findings contribute to elucidate the mechanism of male sterility in upland cotton.

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng Zhang ◽  
Ji Liu ◽  
Qiang Ma ◽  
Yuan Qin ◽  
Hantao Wang ◽  
...  

Abstract Background Male sterility is a simple and efficient pollination control system that is widely exploited in hybrid breeding. In upland cotton, CCRI9106, a photosensitive genetic male sterile (PGMS) mutant isolated from CCRI040029, was reported of great advantages to cotton heterosis. However, little information concerning the male sterility of CCRI9106 is known. Here, comparative transcriptome analysis of CCRI9106 (the mutant, MT) and CCRI040029 (the wild type, WT) anthers in Anyang (long-day, male sterile condition to CCRI9106) was performed to reveal the potential male sterile mechanism of CCRI9106. Results Light and electron microscopy revealed that the male sterility phenotype of MT was mainly attributed to irregularly exine, lacking tryphine and immature anther cuticle. Based on the cytological characteristics of MT anthers, anther RNA libraries (18 in total) of tetrad (TTP), late uninucleate (lUNP) and binucleate (BNP) stages in MT and WT were constructed for transcriptomic analysis, therefore revealing a total of 870,4 differentially expressed genes (DEGs). By performing gene expression pattern analysis and protein-protein interaction (PPI) networks construction, we found down-regulation of DEGs, which enriched by the lipid biosynthetic process and the synthesis pathways of several types of secondary metabolites such as terpenoids, flavonoids and steroids, may crucial to the male sterility phenotype of MT, and resulting in the defects of anther cuticle and tryphine, even the irregularly exine. Furthermore, several lipid-related genes together with ABA-related genes and MYB transcription factors were identified as hub genes via weighted gene co-expression network analysis (WGCNA). Additionally, the ABA content of MT anthers was reduced across all stages when compared with WT anthers. At last, genes related to the formation of anther cuticle and tryphine could activated in MT under short-day condition. Conclusions We propose that the down-regulation of genes related to the assembly of anther cuticle and tryphine may lead to the male sterile phenotype of MT, and MYB transcription factors together with ABA played key regulatory roles in these processes. The conversion of fertility in different photoperiods may closely relate to the functional expression of these genes. These findings contribute to elucidate the mechanism of male sterility in upland cotton.


2020 ◽  
Author(s):  
Meng Zhang ◽  
Ji Liu ◽  
Qiang Ma ◽  
Yuan Qin ◽  
Hantao Wang ◽  
...  

Abstract Background: Male sterility is a simple and efficient pollination control system that is widely exploited in hybrid breeding. In upland cotton, CCRI9106, a photosensitive genetic male sterile (PGMS) mutant isolated from CCRI040029, was reported of great advantages to cotton heterosis. However, little information concerning the male sterility of CCRI9106 is known. Here, comparative transcriptome analysis of CCRI9106 (the mutant, MT) and CCRI040029 (the wild type, WT) anthers in Anyang (long-day, male sterile condition to CCRI9106) was performed to reveal the potential male sterile mechanism of CCRI9106.Results: Light and electron microscopy revealed that the male sterility phenotype of MT was mainly attributed to irregularly exine, lacking tryphine and immature anther cuticle. Based on the cytological characteristics of MT anthers, anther RNA libraries (18 in total) of tetrad (TTP), late uninucleate (LUNP) and binucleate (BNP) stages in MT and WT were constructed for transcriptomic analysis, therefore revealing a total of 870,4 differentially expressed genes (DEGs). By performing gene expression pattern analysis and protein-protein interaction (PPI) networks construction, we found down-regulation of DEGs, which enriched by the lipid biosynthetic process and the synthesis pathways of several types of secondary metabolites such as terpenoids, flavonoids and steroids, may crucial to the male sterility phenotype of MT, and resulting in the defects of anther cuticle and tryphine, even the irregularly exine. Furthermore, several lipid-related genes together with ABA-related genes and MYB transcription factors were identified as hub genes via weighted gene co-expression network analysis (WGCNA). Additionally, the ABA content of MT anthers was reduced across all stages when compared with WT anthers. At last, genes related to the formation of anther cuticle and tryphine could activated in MT under short-day condition.Conclusions: We propose that the down-regulation of genes related to the assembly of anther cuticle and tryphine may lead to the male sterile phenotype of MT, and MYB transcription factors together with ABA played key regulatory roles in these processes. The conversion of fertility in different photoperiods may closely relate to the functional expression of these genes. These findings contribute to elucidate the mechanism of male sterility in upland cotton.


2020 ◽  
Author(s):  
Meng Zhang ◽  
Ji Liu ◽  
Qiang Ma ◽  
Yuan Qin ◽  
Hantao Wang ◽  
...  

Abstract Background: Male sterility is a simple and efficient pollination control system that is widely exploited in hybrid breeding. In upland cotton, CCRI9106, a photosensitive genetic male sterile (PGMS) mutant isolated from CCRI040029, was reported of great advantages to cotton heterosis. However, the underlying molecular mechanism of CCRI9106 remains unclear.Results: In this study, light and electron microscopy revealed that the male sterility phenotype of MT was mainly attributed to irregularly exine, lacking tryphine and immature anther cuticle. Based on the cytological characteristics of MT anthers, 18 RNA libraries were constructed from the anthers of MT and WT at tetrad (TTP), late uninucleate (LUNP) and binucleate (BNP) stages of anther development for transcriptomic analysis, therefore revealing a total of 870,4 differentially expressed genes (DEGs). By performing gene expression pattern analysis and protein-protein interaction (PPI) networks construction, we found down-regulation of DEGs in cluster 2, which enriched by the lipid biosynthetic process and the synthesis pathways of several types of secondary metabolites such as terpenoids, flavonoids and steroids, may crucial to the male sterility phenotype of MT, and resulting in the defects of anther cuticle and tryphine, even the irregularly exine. Furthermore, several lipid-related genes together with ABA-related genes and MYB transcription factors were identified as hub genes via weighted gene co-expression network analysis (WGCNA), such as NPC2, LTPG, LTP1, MAKR6, Ghir_D11G032630, Ghir_A01G008890, Ghir_D01G009320, MYB3, MYB7, MYB16 and MYB48. Additionally, the ABA content of MT anthers was reduced across all stage when compared with WT anthers.Conclusions: In summary, we propose that the down-regulation of genes related to the assembly of anther cuticle and tryphine may lead to the male sterile phenotype of MT, and MYB transcription factors together with ABA play key regulatory role in these processes. These findings provide valuable information on the transcriptional level to anther and pollen development, and contribute to elucidate the mechanism of male sterility in upland cotton.


Author(s):  
Junping Yu ◽  
Guolong Zhao ◽  
Wei Li ◽  
Ying Zhang ◽  
Peng Wang ◽  
...  

Abstract Key message Identification and functional analysis of the male sterile gene MS6 in Glycine max. Abstract Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yanyan Sun ◽  
Dongsuo Zhang ◽  
Zhenzhen Wang ◽  
Yuan Guo ◽  
Xiaomin Sun ◽  
...  

Abstract Background Photoperiod and/or thermo-sensitive male sterility is an effective pollination control system in crop two-line hybrid breeding. We previously discovered the spontaneous mutation of a partially male sterile plant and developed a thermo-sensitive genic male sterile (TGMS) line 373S in Brassica napus L. The present study characterized this TGMS line through cytological observation, photoperiod/ temperature treatments, and genetic investigation. Results Microscopic observation revealed that the condensed cytoplasm and irregular exine of microspores and the abnormal degradation of tapetum are related to pollen abortion. Different temperature and photoperiod treatments in field and growth cabinet conditions indicated that the fertility alteration of 373S was mainly caused by temperature changes. The effects of photoperiod and interaction between temperature and photoperiod were insignificant. The critical temperature leading to fertility alteration ranged from 10 °C (15 °C/5 °C) to 12 °C (17 °C/7 °C), and the temperature-responding stage was coincident with anther development from pollen mother cell formation to meiosis stages. Genetic analysis indicated that the TGMS trait in 373S was controlled by one pair of genes, with male sterility as the recessive. Multiplex PCR analysis revealed that the cytoplasm of 373S is pol type. Conclusions Our study suggested that the 373S line in B. napus has a novel thermo-sensitive gene Bnmst1 in Pol CMS cytoplasm background, and its fertility alteration is mainly caused by temperature changes. Our results will broaden the TGMS resources and lay the foundation for two-line hybrid breeding in B. napus.


2020 ◽  
Vol 71 (20) ◽  
pp. 6328-6339
Author(s):  
José Fernández-Gómez ◽  
Behzad Talle ◽  
Zoe A Wilson

Abstract Understanding the control of fertility is critical for crop yield and breeding; this is particularly important for hybrid breeding to capitalize upon the resultant hybrid vigour. Different hybrid breeding systems have been adopted; however, these are challenging and crop specific. Mutants with environmentally reversible fertility offer valuable opportunities for hybrid breeding. The barley HvMS1 gene encodes a PHD-finger transcription factor that is expressed in the anther tapetum, which is essential for pollen development and causes complete male sterility when overexpressed in barley. This male sterility is due at least in part to indehiscent anthers resulting from incomplete tapetum degeneration, failure of anther opening, and sticky pollen under normal growth conditions (15 °C). However, dehiscence and fertility are restored when plants are grown at temperatures >20 °C, or when transferred to >20 °C during flowering prior to pollen mitosis I, with transfer at later stages unable to rescue fertility in vivo. As far as we are aware, this is the first report of thermosensitive male sterility in barley. This offers opportunities to understand the impact of temperature on pollen development and potential applications for environmentally switchable hybrid breeding systems; it also provides a ‘female’ male-sterile breeding tool that does not need emasculation to facilitate backcrossing.


2021 ◽  
Vol 22 (16) ◽  
pp. 8541
Author(s):  
Wenlong Yang ◽  
Yafei Li ◽  
Linhe Sun ◽  
Muhammad Shoaib ◽  
Jiazhu Sun ◽  
...  

The utilization of heterosis is an important way to improve wheat yield, and the production of wheat hybrid seeds mainly relies on male-sterile lines. Male sterility in line 15 Fan 03 derived from a cross of 72,180 and Xiaoyan 6 is controlled by a single recessive gene. The gene was mapped to the distal region of chromosome 4BS in a genetic interval of 1.4 cM and physical distance of 6.57 Mb between SSR markers Ms4BS42 and Ms4BS199 using an F2 population with 1205 individuals. Sterile individuals had a deletion of 4.57 Mb in the region presumed to carry the Ms1 locus. The allele for sterility was therefore named ms1s. Three CAPS markers were developed and verified from the region upstream of the deleted fragment and can be used for ms1s marker-assisted selection in wheat hybrid breeding. This work will enrich the utilization of male sterility genetic resources.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lijun Zhang ◽  
Mingchuan Ma ◽  
Lin Cui ◽  
Longlong Liu

Abstract Background Male sterility (MS) has important applications in hybrid seed production, and the abortion of anthers has been observed in many plant species. While most studies have focused on the genetic factors affecting male sterility, the dynamic gene expression patterns of pollen abortion in male sterile lines have not been fully elucidated. In addition, there is still no hybrid oat that is commercially planted due to the lack of a suitable system of male sterility for hybrid breeding. Results In this study, we cultivated a male sterile oat line and a near-isogenic line by crossbreeding to elucidate the expression patterns of genes that may be involved in sterility. The first reported CA male sterile (CAMS) oat line was used for cross-testing and hybridization experiments and was confirmed to exhibit a type of nuclear sterility controlled by recessive genes. Oat stamens of two lines were sampled at four different developmental stages separately. Paired-end RNA sequencing was performed for each sample and generated 252.84 Gb sequences. There were 295,462 unigenes annotated in public databases in all samples, and we compared the histological characteristics and transcriptomes of oat stamens from the two oat lines at different developmental stages. Our results demonstrate that the sterility of the male sterile oat line occurs in the early stage of stamen development and is primarily attributable to abnormal meiosis and the excessive accumulation of superoxide. Conclusions To the best of our knowledge, this study is the first to decipher the dynamic expression profiles of pollen abortion CAMS and CA male fertile (CAMF) oat lines, which may represent a valuable resource for further studies attempting to understand pollen abortion and anther development in oats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saurabh Singh ◽  
Reeta Bhatia ◽  
Raj Kumar ◽  
Tusar K. Behera ◽  
Khushboo Kumari ◽  
...  

Mitochondrial markers can be used to differentiate diverse mitotypes as well as cytoplasms in angiosperms. In cauliflower, cultivation of hybrids is pivotal in remunerative agriculture and cytoplasmic male sterile lines constitute an important component of the hybrid breeding. In diversifying the source of male sterility, it is essential to appropriately differentiate among the available male sterile cytoplasms in cauliflower. PCR polymorphism at the key mitochondrial genes associated with male sterility will be instrumental in analyzing, molecular characterization, and development of mitotype-specific markers for differentiation of different cytoplasmic sources. Presence of auto- and alloplasmic cytonuclear combinations result in complex floral abnormalities. In this context, the present investigation highlighted the utility of organelle genome-based markers in distinguishing cytoplasm types in Indian cauliflowers and unveils the epistatic effects of the cytonuclear interactions influencing floral phenotypes. In PCR-based analysis using a set of primers targeted to orf-138, 76 Indian cauliflower lines depicted the presence of Ogura cytoplasm albeit the amplicons generated exhibited polymorphism within the ofr-138 sequence. The polymorphic fragments were found to be spanning over 200–280 bp and 410–470 bp genomic regions of BnTR4 and orf125, respectively. Sequence analysis revealed that such cytoplasmic genetic variations could be attributed to single nucleotide polymorphisms and insertion or deletions of 31/51 nucleotides. The cytoplasmic effects on varying nuclear-genetic backgrounds rendered an array of floral abnormalities like reduction in flower size, fused flowers, splitted style with the exposed ovule, absence of nonfunctional stamens, and petaloid stamens. These floral malformations caused dysplasia of flower structure affecting female fertility with inefficient nectar production. The finding provides an important reference to ameliorate understanding of mechanism of cytonuclear interactions in floral organ development in Brassicas. The study paves the way for unraveling developmental biology of CMS phenotypes in eukaryotic organisms and intergenomic conflict in plant speciation.


2006 ◽  
Vol 62 (6) ◽  
pp. 809-823 ◽  
Author(s):  
Silvia Fornalé ◽  
Fathi-Mohamed Sonbol ◽  
Tamara Maes ◽  
Montserrat Capellades ◽  
Pere Puigdomènech ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document