Diagnostic value of serum miR-145 and miR-185 as targeting of the APRIL oncogene in the B-cell chronic lymphocytic leukemia

2020 ◽  
Author(s):  
Malihe Bagheri ◽  
Behzad Khansarinejad ◽  
Ghasem Mosayebi ◽  
Alireza Moradabadi ◽  
Mahdieh Mondanizadeh

Abstract Background: Chronic lymphocytic leukemia (CLL) is one of the most common hematologic malignancy in adults worldwide. This cancer has a poor prognosis at different stages. So, the identification of new biomarkers is important for early diagnosis of B-CLL. Considering the oncogenic role of APRIL molecule in this leukemia as well as the regulatory role of microRNAs (miRNAs) in different signaling pathways, the present study evaluated the miRNAs targeting APRIL gene in B-CLL.Methods: The miRNAs were predicted and selected using bioinformatics algorithms. A total of 80 plasma samples (40 samples of healthy individuals and 40 samples of B-CLL patients) were subjected to RNA extraction and synthesis of cDNA. The expressions levels of predicted miRNAs and APRIL gene in plasma of B-CLL patients and healthy individuals were assessed by Real time PCR analysis. ROC analysis was performed to investigate the role predicted miRNAs as novel biomarkers in diagnosis of B-CLL. Results: The results of the prediction showed that miR-145-5p and miR-185-5p target the APRIL gene. The expression level of APRIL gene was strikingly higher in plasma of B-CLL patients than in the healthy individuals (102, P= 0.001). On the other hand, expression levels of miR-145-5p and miR-185-5p were strikingly lower in B-CLL patients than in the healthy individuals (0.07, P= 0.001) (0.29, P= 0.001). Also, ROC curve analyses demonstrated that miR-145-5p and miR-185-5p are specific and sensitive and may serve as new biomarkers for the early detection of B-CLL. Conclusions: These data suggest that the study miRNAs may have a role in B-CLL development and progression. Moreover, miR-145-5p and miR-185-5p can be served as a novel and potential biomarker in the diagnosis of B-CLL.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1120-1120
Author(s):  
Alexander Roeth ◽  
Dirk de Beer ◽  
Holger Nueckel ◽  
Ludger Sellmann ◽  
Ulrich Duehrsen ◽  
...  

Abstract BACKGROUND: In contrast to other B-cell neoplasias, chronic lymphocytic leukemia (CLL) is not only characterized by a clonal expansion of specific B-cells, but also by an increase in non-leukemic T-cells, most likely involved in sustaining the growth of the leukemic B-cell clone. Based on ZAP-70, CD38 and the IgVH mutation status, two prognostic groups of CLL patients can be identified. Our aim was to characterize the replicative histories of the B- and T-cells in the two groups of CLL patients compared to healthy individuals. PATIENTS and METHODS: Blood samples from 73 patients with CLL (ZAP-70−/CD38−: n = 29, ZAP-70+/CD38+: n = 30, ZAP-70/CD38 discordant: n = 14) were analyzed. The quantity and characteristics of the lymphocyte subsets was assessed by a cell counter and by immunophenotypic analysis. The replicative histories of naive and memory T-cells as well as B-cells was determined by measurements of telomere length in peripheral blood leukocytes of CLL patients and healthy individuals by automated multicolor flow-FISH. RESULTS: As expected, the average telomere length of the clonal B-cells was short. The telomere length was, however, significantly shorter for the ZAP-70+/CD38+ patient samples (2.46 ± 1.08 kb) than for the ZAP-70−/CD38− patient samples (5.06 ± 1.76 kb, p < 6.7 x 10−9). Interestingly, also the naive and memory T-cells from ZAP-70+/CD38+ CLL patients exhibited significantly shorter average telomere lengths (mean ± std: 4.85 ± 1.58 kb; 4.39 ± 1.09 kb) than T-cells from ZAP-70−/CD38− CLL patients (6.64 ± 1.72 kb, p < 2.2 x 10−4; 6.22 ± 1.5 kb, p < 7.4 x 10−6). These results are in line with the observed higher absolute T-cell numbers in the ZAP-70+/CD38+ CLL patients compared to ZAP-70−/CD38− CLL patients. Moreover, the average telomere loss in relation to time from primary diagnosis to sample date was higher for naive T-cells than memory T-cells in ZAP-70+/CD38+ patients (7.8 vs. 5.8 bp/month). When we compared the telomere length to age-related percentiles calculated from over 400 healthy individuals aged 0–102 years practically all telomere length values of the naive and memory T-cells from the ZAP-70+/CD38+ CLL patients fell below the 50th percentile, whereas the values of naive and memory T-cells from the ZAP-70−/CD38− CLL patients were within the normal distribution. CONCLUSIONS: We can confirm significantly shorter telomere length values for the B-cells of the ZAP-70+/CD38+ CLL patients. In addition, we can also demonstrate significantly shorter telomeres in T-cells of ZAP-70+/CD38+ CLL patients, which are below the 50th percentile compared to controls, and a higher telomere loss over time for naive T-cells of ZAP-70+/CD38+ CLL patients. As telomere length shortens approximately 50 to 100 bp per cell division the observed decrease in telomere length of the T-cells in ZAP-70+/CD38+ CLL patients equals to approximately 18 to 36 population doublings. This is by far more than expected by the slightly higher T-cell numbers in the peripheral blood. Our observations imply an extensive expansion of the T-cell compartment in ZAP-70+/CD38+ CLL patients and suggest an important role of T-cells in this subgroup of CLL patients.


2021 ◽  
Vol 10 (5) ◽  
pp. 1051 ◽  
Author(s):  
Afshin Derakhshani ◽  
Nima Hemmat ◽  
Zahra Asadzadeh ◽  
Moslem Ghaseminia ◽  
Mahdi Abdoli Shadbad ◽  
...  

Background: The coronavirus disease 2019 (COVID-19) outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic. It is well-established that SARS-CoV-2 infection can lead to dysregulated immune responses. Arginase-1 (Arg1), which has a pivotal role in immune cells, can be expressed in most of the myeloid cells, e.g., neutrophils and macrophages. Arg1 has been associated with the suppression of antiviral immune responses. Methods: Whole blood was taken from 21 COVID-19 patients and 21 healthy individuals, and after RNA extraction and complementary DNA (cDNA) synthesis, gene expression of Arg1 was measured by real-time PCR. Results: The qPCR results showed that the expression of Arg1 was significantly increased in COVID-19 patients compared to healthy individuals (p < 0.01). The relative expression analysis demonstrated there were approximately 2.3 times increased Arg1 expression in the whole blood of COVID-19 patients. Furthermore, the receiver operating characteristic (ROC) analysis showed a considerable diagnostic value for Arg1 expression in COVID-19 (p = 0.0002 and AUC = 0.8401). Conclusion: Arg1 might be a promising marker in the pathogenesis of the disease, and it could be a valuable diagnostic tool.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2090-2093 ◽  
Author(s):  
Dirk Kienle ◽  
Axel Benner ◽  
Alexander Kröber ◽  
Dirk Winkler ◽  
Daniel Mertens ◽  
...  

The mutation status and usage of specific VH genes such as V3-21 and V1-69 are potentially independent pathogenic and prognostic factors in chronic lymphocytic leukemia (CLL). To investigate the role of antigenic stimulation, we analyzed the expression of genes involved in B-cell receptor (BCR) signaling/activation, cell cycle, and apoptosis control in CLL using these specific VH genes compared to VH mutated (VH-MUT) and VH unmutated (VH-UM) CLL not using these VH genes. V3-21 cases showed characteristic expression differences compared to VH-MUT (up: ZAP70 [or ZAP-70]; down: CCND2, P27) and VH-UM (down: PI3K, CCND2, P27, CDK4, BAX) involving several BCR-related genes. Similarly, there was a marked difference between VH unmutated cases using the V1-69 gene and VH-UM (up: FOS; down: BLNK, SYK, CDK4, TP53). Therefore, usage of specific VH genes appears to have a strong influence on the gene expression pattern pointing to antigen recognition and ongoing BCR stimulation as a pathogenic factor in these CLL subgroups.


1989 ◽  
pp. 372-377 ◽  
Author(s):  
Carlos J. Carrera ◽  
Shiro Seto ◽  
D. Bruce Wasson ◽  
Lawrence D. Piro ◽  
Ernest Beutler ◽  
...  

2021 ◽  
Author(s):  
Fatemeh hosseinpour-soleimani ◽  
Gholamreza Khamisipour ◽  
Zahra Derakhshan ◽  
Bahram Ahmadi

Abstract Background Currently, the role of serum-based biomarkers such as microRNAs in cancer diagnosis has been extensively established. This study aimed to determine expression levels of bioinformatically selected miRNAs and whether they can be used as biomarkers or a new therapeutic target in patients with Acute Lymphoblastic Leukemia (ALL). Materials and Methods The expression levels of serum miR-22, miR-122, miR-217, and miR-367 in 21 ALL patients and 21 healthy controls were measured using quantitative real-time PCR. The receiver operating characteristic (ROC) curve and the associated area under the curve (AUC) was used to assess candidate miRNAs' diagnostic value as a biomarker. Results The results showed that miR-217 was markedly decreased in patients with ALL compared to controls. Moreover, miR-22, miR-122, and miR-367 were found to be upregulated. Furthermore, ROC analysis showed that serum miR-217 and miR-367 could differentiate ALL patients from the healthy individuals, while miR-22 has approximate discriminatory power that requires further investigation. Conclusion Collectively, the results suggested that miR-217 may play a tumor suppressor role in ALL, whereas miR-22, miR-122, and miR-367 could function as an oncogene. Overall, miR-22, miR-217, and miR-367 could be considered possible biomarkers for the early diagnosis of ALL.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 290-297 ◽  
Author(s):  
Holger Nückel ◽  
Ulrich H. Frey ◽  
Maja Bau ◽  
Ludger Sellmann ◽  
Jens Stanelle ◽  
...  

Abstract Bcl-2 plays a key role in the regulation of apoptosis. We investigated the role of a novel regulatory single-nucleotide polymorphism (−938C>A) in the inhibitory P2 BCL2 promoter in B-cell chronic lymphocytic leukemia (B-CLL). The −938C allele displayed significantly increased BCL2 promoter activity and binding of nuclear proteins compared with the A allele. Concomitantly, Bcl-2 protein expression in B cells from CLL patients carrying the −938 AA genotype was significantly increased compared with CC genotypes. Genotype distribution between 123 CLL patients (42 AA, 55 AC, 26 CC) and 120 genotyped healthy controls (36 AA, 63 AC, 21 CC) was not significantly different, suggesting that genotypes of this polymorphism do not increase the susceptibility for B-CLL. However, median time from first diagnosis to initiation of chemotherapy and median overall survival were significantly shorter in patients with −938AA genotype (38 and 199 months, respectively) compared with AC/CC genotypes (120 and 321 months, respectively; P = .008 and P = .003, respectively). Multivariable Cox regression identified the BCL2−938AA genotype as an independent prognostic factor for the time to first treatment (hazard ratio [HR] 1.9; P = .034) together with disease stage at diagnosis (HR 2.5; P = .004) and ZAP-70 status (HR 3.0; P = .001). The BCL2−938AA genotype is associated with increased Bcl-2 expression and a novel unfavorable genetic marker in patients with B-CLL.


Sign in / Sign up

Export Citation Format

Share Document