scholarly journals Anti-Inflammatory Mechanisms of Xuefu Zhuyu Decoction in The Treatment of Atherosclerosis Based on Network Pharmacology and Microarray Data Differences Analysis

Author(s):  
Haoran Li ◽  
Hongyun Wu ◽  
Weiying Li ◽  
Jie Yang ◽  
Wei Peng

Abstract Background: Xuefu Zhuyu decoction is a traditional Chinese formula composed of eleven herbs, which has the effect of promoting blood circulation and removing blood stasis. In this study, the anti-inflammatory mechanisms of Xuefu Zhuyu decoction in the treatment of atherosclerosis were studied utilizing network pharmacology, data mining, microarray data differences analysis and molecular docking.Methods: Analyzing data from the TCMSP, the effective components and key targets of Xuefu Zhuyu decoction were screened out. Atherosclerosis-related genes were extracted from the disease databases and determined according to differences analysis. The component-target network was constructed and gene enrichment analysis, as well as topology analysis, were carried out. Finally, the affinity between the target and the effective components was verified by molecular docking.Results: We screened 186 effective components of Xuefu Zhuyu decoction from TCMSP and obtained 126 targets. Through searching the disease databases and analyzing the results of differences analysis, two hundred and one atherosclerosis-related genes were obtained. After constructing the component-target network, it was found that Xuefu Zhuyu decoction played an anti-atherosclerotic role by acting on 21 targets. The results of enrichment analysis suggested that 21 key targets were mainly enriched in biological processes such as leukocyte adhesion and endothelial cell proliferation. The results of molecular docking showed that the key components of Xuefu Zhuyu decoction, have a good affinity with IL-6 and VEGFA.Conclusions: Our bioinformatics analyses suggest that Xuefu Zhuyu decoction plays an anti-atherosclerotic role by regulating biological processes such as leukocyte adhesion and endothelial cell proliferation. This study provides a theoretical basis for the further study of the indications of Xuefu Zhuyu decoction and the development of anti-atherosclerotic drugs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingxu Zhang ◽  
Jiawei Yang ◽  
Xiulan Zhao ◽  
Ying Zhao ◽  
Siquan Zhu

AbstractDiabetic retinopathy (DR) is a leading cause of irreversible blindness globally. Qidengmingmu Capsule (QC) is a Chinese patent medicine used to treat DR, but the molecular mechanism of the treatment remains unknown. In this study, we identified and validated potential molecular mechanisms involved in the treatment of DR with QC via network pharmacology and molecular docking methods. The results of Ingredient-DR Target Network showed that 134 common targets and 20 active ingredients of QC were involved. According to the results of enrichment analysis, 2307 biological processes and 40 pathways were related to the treatment effects. Most of these processes and pathways were important for cell survival and were associated with many key factors in DR, such as vascular endothelial growth factor-A (VEGFA), hypoxia-inducible factor-1A (HIF-1Α), and tumor necrosis factor-α (TNFα). Based on the results of the PPI network and KEGG enrichment analyses, we selected AKT1, HIF-1α, VEGFA, TNFα and their corresponding active ingredients for molecular docking. According to the molecular docking results, several key targets of DR (including AKT1, HIF-1α, VEGFA, and TNFα) can form stable bonds with the corresponding active ingredients of QC. In conclusion, through network pharmacology methods, we found that potential biological mechanisms involved in the alleviation of DR by QC are related to multiple biological processes and signaling pathways. The molecular docking results also provide us with sound directions for further experiments.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Longchuan Wu ◽  
Yu Chen ◽  
Jiao Yi ◽  
Yi Zhuang ◽  
Lei Cui ◽  
...  

Objective. To explore the mechanism of action of Bu-Fei-Yi-Shen formula (BFYSF) in treating chronic obstructive pulmonary disease (COPD) based on network pharmacology analysis and molecular docking validation. Methods. First of all, the pharmacologically active ingredients and corresponding targets in BFYSF were mined by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the analysis platform, and literature review. Subsequently, the COPD-related targets (including the pathogenic targets and known therapeutic targets) were identified through the TTD, CTD, DisGeNet, and GeneCards databases. Thereafter, Cytoscape was employed to construct the candidate component-target network of BFYSF in the treatment of COPD. Moreover, the cytoHubba plug-in was utilized to calculate the topological parameters of nodes in the network; then, the core components and core targets of BFYSF in the treatment of COPD were extracted according to the degree value (greater than or equal to the median degree values for all nodes in the network) to construct the core network. Further, the Autodock vina software was adopted for molecular docking study on the core active ingredients and core targets, so as to verify the above-mentioned network pharmacology analysis results. Finally, the Omicshare database was applied in enrichment analysis of the biological functions of core targets and the involved signaling pathways. Results. In the core component-target network of BFYSF in treating COPD, there were 30 active ingredients and 37 core targets. Enrichment analysis suggested that these 37 core targets were mainly involved in the regulation of biological functions, such as response to biological and chemical stimuli, multiple cellular life processes, immunity, and metabolism. Besides, multiple pathways, including IL-17, Toll-like receptor (TLR), TNF, and HIF-1, played certain roles in the effect of BFYSF on treating COPD. Conclusion. BFYSF can treat COPD through the multicomponent, multitarget, and multipathway synergistic network, which provides basic data for intensively exploring the mechanism of action of BFYSF in treating COPD.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiao-Li Chen ◽  
Cheng Tang ◽  
Qing-Ling Xiao ◽  
Zhong-Hua Pang ◽  
Dan-Dan Zhou ◽  
...  

Objective. This study aimed to clarify the mechanism of Fei-Xian formula (FXF) in the treatment of pulmonary fibrosis based on network pharmacology analysis combined with molecular docking validation. Methods. Firstly, ingredients in FXF with pharmacological activities, together with specific targets, were identified based on the BATMA-TCM and TCMSP databases. Then, targets associated with pulmonary fibrosis, which included pathogenic targets as well as those known therapeutic targets, were screened against the CTD, TTD, GeneCards, and DisGeNet databases. Later, Cytoscape was employed to construct a candidate component-target network of FXF for treating pulmonary fibrosis. In addition, for nodes within the as-constructed network, topological parameters were calculated using CytoHubba plug-in, and the degree value (twice as high as the median degree value for all the nodes) was adopted to select core components as well as core targets of FXF for treating pulmonary fibrosis, which were subsequently utilized for constructing the core network. Furthermore, molecular docking study was carried out on those core active ingredients together with the core targets using AutoDock Vina for verifying results of network pharmacology analysis. At last, OmicShare was employed for enrichment analysis of the core targets. Results. Altogether 12 active ingredients along with 13 core targets were identified from our constructed core component-target network of FXF for the treatment of pulmonary fibrosis. As revealed by enrichment analysis, the 13 core targets mostly concentrated in regulating biological functions, like response to external stimulus (from oxidative stress, radiation, UV, chemical substances, and virus infection), apoptosis, cell cycle, aging, immune process, and protein metabolism. In addition, several pathways, like IL-17, AGE-RAGE, TNF, HIF-1, PI3K-AKT, NOD-like receptor, T/B cell receptor, and virus infection-related pathways, exerted vital parts in FXF in the treatment of pulmonary fibrosis. Conclusions. FXF can treat pulmonary fibrosis through a “multicomponent, multitarget, and multipathway” mean. Findings in this work lay foundation for further exploration of the FXF mechanism in the treatment of pulmonary fibrosis.


2020 ◽  
Author(s):  
Huiqin Qian ◽  
Bai-Ling Wang ◽  
Ling-Yun Zhang ◽  
Jia-Xiang Li ◽  
Xiu-Xiu Huang

Abstract Background Inula japonica Thunb. (IJT) is an extensively applied herbal medicine for treating non-small cell lung cancer (NSCLC) due to its anti-asthma, antitussive, and expectorant properties. However, the mechanism of IJT against NSCLC remains to be elucidated. Methods Network pharmacology analysis was applied to determine the function mechanism of IJT against NSCLC. Databases were used to collect compounds and their related and known therapeutic targets. The compound–target (C–T) and target–target networks were then constructed to screen the kernel compounds and NSCLC-related targets of IJT. Moreover, the NSCLC-related targets of IJT were input in the DAVID Bioinformatics Resources (version 6.8) for Gene Ontology Biological Processes (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, the binding affinity of major compounds with the NSCLC-relevant targets of IJT was further verified by molecular docking. Results Two active compounds (quercetin and luteolin) and six putative targets (RAC-alpha serine/threonine-protein kinase, G1/S-specific cyclin-D1, cyclin-dependent kinase inhibitor 2A, epidermal growth factor receptor, receptor tyrosine-protein kinase erbB-2, and cellular tumor antigen p53) were screened as the effective compounds and NSCLC-related targets of IJT. GOBP and KEGG enrichment analysis indicated that NSCLC was the major pathway of IJT in the treatment of NSCLC and the mediation of apoptosis, cell cycle, tumor progression, and proliferation of biological processes, including the Ras, ERBB, MAPK, PI3K–Akt, calcium, and p53 signaling pathways. The results of molecular docking validated that 10 of the 12 pairs of compound-target had effective binding. Conclusions The mechanisms of IJT against NSCLC through multi-compounds, multi-targets, and multi-pathways were elucidated.


2020 ◽  
Author(s):  
Xiao Song ◽  
Fei Guo ◽  
Xiao-Chen Sun ◽  
Shu-Yue Wang ◽  
Yao-Hui Yuan ◽  
...  

Abstract Background: Leukemia was listed by the World Health Organization as one of the five most intractable diseases in the world. The multi-drug resistance (MDR) of leukemia cells limits the efficacy of anti-tumor drugs and is the major reason for the chemotherapy failure and recurrence of leukemia chemotherapy. Some studies have shown that Euphorbiae semen (ES) possesses the characteristics of new therapeutic drugs for MDR. However, the molecular mechanisms and active compounds have not yet been fully clarified. Therefore, there is a need for explore its active compounds and demonstrate its mechanisms through network pharmacology and molecular docking technology.Method: First, the TCMSP database was searched and screened the active compounds of the ES, supplemented with compounds verified by literature, so as to further identify the core compounds in the active ingredient. Simultaneously, the TCMSP and Swiss database were searched to the targets of active compounds, and the targets of reverses leukemia multidrug resistance (RL-MDR) were screened in the relevant databases, such as GeneCards and DrugBank. Then, the targets of active compounds were intersected with RL-MDR targets to obtain potential targets of ES acting on MDR. The compound–target network was constructed by Cytoscape. The target protein–protein interaction network was built using STRING and Cytoscape database. Second, the R language and DAVID database were used to analyse Gene Ontology (GO) biological functions analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways enrichment. Finally, molecular docking method was utilized to investigate the binding activity between the core targets and the active compounds of ES.Results: Compound–target network mainly contained 22 compounds and 81 corresponding targets. Finally, seven components in ES were selected and 10 core targets were identified; Key targets contained JUN, CASP3, MAOA, AR, PPARG, DRD2, ADRA2A, CHRM2, PTGS2 and MAPK14. GO enrichment analysis indicated the main biological functions of potential genes of ES in the treatment of MDR. KEGG pathway enrichment analysis showed the main pathways, mainly including apoptosis, pathways in cancer, p53 signaling pathway, VEGF signaling pathway, TNF signaling pathway and PI3K–Akt signaling pathway. Finally, we chose the top 10 common targets for molecular docking with the 7 active compounds of ES. The results of molecular docking indicated that the compounds of ES, which had good affinity with targets. Conclusion: The molecular mechanism of ES in the treatment of MDR showed the synergistic reaction of multi-compound, multi-target, and multi-pathway of traditional Chinese medicine, which provided ideas for further clinical research.


2021 ◽  
Author(s):  
Yi Pan ◽  
Wanlu Zhao ◽  
Luping Qin ◽  
Lu Zhang

Abstract Background: Youguiyin (YGY) has been confirmed to treat osteoporosis (OP) in clinical trials, but its specific pharmacological mechanism remains unclear. This study aimed to explore the material basis and potential mechanism of YGY in the treatment of OP based on network pharmacology and molecular docking.Methods: Databases including TCMSP, SwissTargetPrediction database, OMIM, and TTD were used to predict the effective ingredients and relevant targets of YGY in the treatment of OP. The STRING database was used to reveal the relationship between each intersection target protein. Metascape database was used to perform GO enrichment analysis and KEGG pathway enrichment analysis on the intersection targets. Cytoscape 3.6.0 software was used to show the complex network relationship of YGY in the treatment of OP. According to the results of network characteristics analysis, the core effective ingredients and the core targets were screened out. Autodock 4.0 was used for molecular docking and Pymol was used to visualize the docking results.Results: 290 effective ingredients, 1127 targets of the effective ingredients, 273 relevant targets of OP and 17 intersection targets were screened out in total by searching literature and databases. Intersection targets could affect biological processes including regulation of inflammatory response, ossification, negative regulation of post-transcriptional gene silencing, positive regulation of cytokine biosynthetic process and regulation of hormone levels by regulating signal pathways including TNF signaling pathway, osteoclast differentiation, apoptosis, MAPK signaling pathway and PI3K/Akt signaling pathway. Through screening, 14 core effective ingredients and 6 core targets were confirmed. The results of molecular docking showed that most of the core effective ingredients including α-humulene, cinnamaldehyde, denudatine, benzoylhypaconine and quercetin had good binding activity with the core targets including TNF-α, IL-1β and IL-6.Conclusion: Based on network pharmacology and molecular docking, the critical effective ingredients, key targets, important signal pathways and main biological processes of YGY in the treatment of OP were successfully screened out. This study revealed the material basis and the mechanism of YGY in the treatment of OP and provided a theoretical basis for follow-up experimental research and clinical application of YGY.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qiang Gao ◽  
Danfeng Tian ◽  
Zhenyun Han ◽  
Jingfeng Lin ◽  
Ze Chang ◽  
...  

Background and Objective. With the exact clinical efficacy, Buyang Huanwu decoction (BHD) is a classical prescription for the treatment of ischemic stroke (IS). Here, we aimed to investigate the pharmacological mechanisms of BHD in treating IS using systems biology approaches. Methods. The bioactive components and potential targets of BHD were screened by TCMSP, BATMAN-TCM, ETCM, and SymMap databases. Besides, compounds that failed to find the targets from the above databases were predicted through STITCH, SwissTargetPrediction, and SEA. Moreover, six databases were searched to mine targets of IS. The intersection targets were obtained and analyzed by GO and KEGG enrichment. Furthermore, BHD-IS PPI network, compound-target network, and herb-target-pathway network were constructed by Cytoscape 3.6.0. Finally, AutoDock was used for molecular docking verification. Results. A total of 235 putative targets were obtained from 59 active compounds in BHD. Among them, 62 targets were related to IS. PPI network showed that the top ten key targets were IL6, TNF, VEGFA, AKT1, etc. The enrichment analysis demonstrated candidate BHD targets were more frequently involved in TNF, PI3K-Akt, and NF-kappa B signaling pathway. Network topology analysis showed that Radix Astragali was the main herb in BHD, and the key components were quercetin, beta-sitosterol, kaempferol, stigmasterol, etc. The results of molecular docking showed the active components in BHD had a good binding ability with the key targets. Conclusions. Our study demonstrated that BHD exerted the effect of treating IS by regulating multitargets and multichannels with multicomponents through the method of network pharmacology and molecular docking.


2021 ◽  
Author(s):  
Zhiqiang li ◽  
Luo Jun

Abstract Objective: To predict the key molecular mechanism of Shaoyao Liquorice Aconite Decoction in the treatment of osteoarthritis by using network pharmacology and molecular docking technology, and to provide a new target for the treatment of osteoarthritis. Methods: by means of traditional Chinese medicine database TCMSP screening peony licorice monkshood soup main active component of radix paeoniae alba, radix glycyrrhizae, and the corresponding targets, lateral root of aconite and retrieve OMIM, GeneCards, TDD, PharmGKB and Drugbank database related target for treatment of osteoarthritis, and then forecast drug targets and disease targets for intersection get peony licorice monkshood soup targets for the treatment of osteoarthritis.Then, STRING database and Cytoscape software were used to construct the "drug active component - action target" network and protein interaction network of Shaoyaogaofuzi Decoction in the treatment of osteoarthritis, and David database was used for GO function enrichment analysis and KEGG pathway enrichment analysis of shaoyaogaofuzi Decoction in the treatment of osteoarthritis.Finally, PyMOL, Chem3D, AutoDock, OpenBabel and other software were used to verify the molecular docking of the key active ingredients and key targets of Shaoyao Liquorice Aconite Decoction. Results: 162 active components were screened out.A total of 954 disease targets were collected, and a total of 72 disease targets were obtained after weight removal.Protein interaction analysis suggested that TNF, AKT1, IL6, IL1B and TP53 were the core targets of protein interaction network.Through GO enrichment analysis, 393 biological processes were obtained, and it was found that biological processes were mainly enriched in cell differentiation, migration, apoptosis, and cell stress response to organisms.A total of 116 Pathways were obtained through KEGG pathway enrichment analysis, mainly involving Pathways in cancer, TNF Signaling Pathway, Tuberculosis, Chagas disease, Hepatitis B, etc. Finally, the molecular docking of key active molecules and key targets was realized for verification.Conclusions: this study of compound Chinese medicine pharmacology, through the network of peony licorice monkshood soup ingredients with osteoarthritis, targets, pathway analysis, you can see that drugs in the treatment of osteoarthritis is not a simple single targeted therapy, but by many components, multi-channel, mutual communications between the multiple targets, on the treatment of osteoarthritis in the future to provide more advice.


2021 ◽  
Author(s):  
Yi Pan ◽  
Wanlu Zhao ◽  
Luping Qin ◽  
Lu Zhang

Abstract Background: Youguiyin (YGY) has been confirmed to treat osteoporosis (OP) in clinical trials, but its specific pharmacological mechanism remains unclear. This study aimed to explore the material basis and potential mechanism of YGY in the treatment of OP based on network pharmacology and molecular docking.Methods: Databases including TCMSP, SwissTargetPrediction database, OMIM, and TTD were used to predict the effective ingredients and relevant targets of YGY in the treatment of OP. The STRING database was used to reveal the relationship between each intersection target protein. Metascape database was used to perform GO enrichment analysis and KEGG pathway enrichment analysis on the intersection targets. Cytoscape 3.6.0 software was used to show the complex network relationship of YGY in the treatment of OP. According to the results of network characteristics analysis, the core effective ingredients and the core targets were screened out. Autodock 4.0 was used for molecular docking and Pymol was used to visualize the docking results.Results: 290 effective ingredients, 1127 targets of the effective ingredients, 273 relevant targets of OP and 17 intersection targets were screened out in total by searching literature and databases. Intersection targets could affect biological processes including regulation of inflammatory response, ossification, negative regulation of post-transcriptional gene silencing, positive regulation of cytokine biosynthetic process and regulation of hormone levels by regulating signal pathways including TNF signaling pathway, osteoclast differentiation, apoptosis, MAPK signaling pathway and PI3K/Akt signaling pathway. Through screening, 14 core effective ingredients and 6 core targets were confirmed. The results of molecular docking showed that most of the core effective ingredients including α-humulene, cinnamaldehyde, denudatine, benzoylhypaconine and quercetin had good binding activity with the core targets including TNF-α, IL-1β and IL-6.Conclusion: Based on network pharmacology and molecular docking, the critical effective ingredients, key targets, important signal pathways and main biological processes of YGY in the treatment of OP were successfully screened out. This study revealed the material basis and the mechanism of YGY in the treatment of OP and provided a theoretical basis for follow-up experimental research and clinical application of YGY.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chen Ou ◽  
Houpan Song ◽  
Yasha Zhou ◽  
Jun Peng ◽  
Qinghua Peng

Background. Qing Guang An Granule (QGAG), a Chinese patent medicine, has been used clinically to treat glaucoma for more than 20 years. Objective. To explore the possible mechanism of treatment of QGAG in glaucoma by using network pharmacology and molecular docking in this study. Methods. Active compounds and targets of each herb in QGAG were retrieved via the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Glaucoma-related targets were acquired from OMIM and DisGeNET database. Key targets of QGAG against glaucoma were acquired by overlapping the above targets via the Venn diagram. Using the DAVID, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the key targets were performed. The docking process was performed using the AutoDock 4.2.6 and AutoDock Vina 1.1.2. Results. The 55 active compounds and 173 targets were obtained and constructed a compound-target network. The 20 key targets of QGAG in treating glaucoma were acquired, and these targets are involved in the apoptotic process, cellular response to hypoxia, negative regulation of cell growth, and ovarian follicle development. The main pathways are p53, HIF-1, PI3K-Akt, and neurotrophin signaling pathway. Conclusion. QGAG may exert a protective effect by acting on the optic nerve at a molecular and systemic level. This study can provide a certain basis for future researches on exploring the QGAG in treating glaucoma and provide new ideas for developing new drugs.


Sign in / Sign up

Export Citation Format

Share Document