scholarly journals Intergrated metagenomics  and metabolomics analysis  discovers  nematicidal microbes, enzymes and metabolites  from the plant rhizosphere microbiota

Author(s):  
Xiuyun Zhao ◽  
Changchun Lin ◽  
Wenfang Yuan ◽  
Song Ruan ◽  
Gaofu Qi

Abstract Background: Root-knot nematode Meloidogyne incognita infects root systems of many crops resulting in huge decrease of crop production. Nematicidal microorganisms provides a safe and effective strategy to control M. incognita infection. In order to find microorganisms with high activity and new nematicidal metabolites, we collected the M. incognita infected tobacco rhizosphere soils (RNI) and non-infected tobacco rhizosphere soils (NS), and investigated their microbial community and network via metagenomics and metabolomics analysis. Results: Microbial networks of RNI soils were very different from the NS soils. Many nematicidal microorganisms were enriched in the NS soils, including isolates of Aspergillus , Achromobacter , Acinetobacter , Bacillus , Burkholderia , Comamonas , Enterobacter , Lysobacter , Microbacterium , Paenibacillus , Pantoea , Pseudomonas , Streptomyces and Variovorax. Enzymes analysis showed these nematicidal microorganisms can produce proteases, chitinase and lipases. The functions genes belonging to pathways of secondary metabolites biosynthesis and carbohydrate transport and metabolism were overrepresented in the rhizophere microbiota of NS soils comparing with the RNI soils. 102 metabolites contents were significantly different between the RNI and NS rhizosphere microbiota. 35 metabolites were overrepresented in the NS soils comparing the RNI samples, including acetophenone. Acetophenone showed high nematicidal (LC 50 = 0.66 μg/ml) and avoidance activity against M. incognita . Bacillus amyloliquefaciens W1 could produce acetophenone. Liquid culture of W1 could kill 98.8% of M . incognita J2 juveniles after treatment for 24 h.Conclusions: In general, the rhizophere microbiota of NS soils could produce volatile materials, multiple enzymes and secondary metabolites against nematode. Collectively, the microbiota of NS and RNI rhizophere differed significantly in microbial network structure, community composition, function genes and metabolites. Collectively, combination of multi-omics analysis and culture-dependent technology is powerful for finding nematicidal microorganisms and metabolites from soil.

2021 ◽  
Author(s):  
Xiuyun Zhao ◽  
Changchun Lin ◽  
Wenfang Yuan ◽  
Song Ruan ◽  
Gaofu Qi

Abstract BackgroundRoot-knot nematode Meloidogyne incognita infects root systems of many crops resulting in huge decrease of crop production. Nematicidal microorganisms provides a safe and effective strategy to control M. incognita infection. In order to find more microorganisms with high activity and new nematicidal metabolites, we collected the M. incognita infected tobacco rhizosphere soils (RNI) and non-infected tobacco rhizosphere soils (NS), and investigated their microbial community and network via metagenomics and metabolomics analysis. ResultsMicrobial networks of RNI soils were very different from the NS soils. Many nematicidal microorganisms were enriched in the NS soils, including some isolates such as Aspergillus , Achromobacter , Acinetobacter , Bacillus , Burkholderia , Comamonas , Enterobacter , Lysobacter , Microbacterium , Paenibacillus , Pantoea , Pseudomonas , Streptomyces and Variovorax. Enzymes analysis showed these nematicidal microorganisms can produce proteases, chitinase and lipases. The functions genes belonging to pathways of secondary metabolites biosynthesis and carbohydrate transport and metabolism were overrepresented in the rhizophere microbiota of NS soils comparing with the RNI soils. 102 metabolites contents were significantly different between the RNI and NS rhizosphere microbiota. 35 metabolites were overrepresented in the NS soils comparing the RNI samples, including acetophenone. Acetophenone showed high nematicidal (LC 50 = 0.66 μg/ml) and avoidance activity against M. incognita . A isolate of Bacillus amyloliquefaciens W1 with production of acetophenone can kill 98.8% of M . incognita . ConclusionsIn general, the rhizophere microbiota of NS soils could produce volatile materials, multiple enzymes and secondary metabolites against nematode. Collectively, the microbiota of NS and RNI rhizophere differed significantly in microbial network structure, community composition, function genes and metabolites. Collectively, combination of multi-omics analysis and culture-dependent technology is powerful for finding nematicidal microorganisms and metabolites from soil.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Vina Maulidia ◽  
Loekas Soesanto ◽  
Syamsuddin Syamsuddin ◽  
Khairan Khairan ◽  
Takahiro Hamaguchi ◽  
...  

Abstract. Maulidia V, Soesanto L, Syamsuddin, Khairan K, Hamaguchi T, Hasegawa K, Sriwati R. 2020. Secondary metabolites produced by endophytic bacteria against the Root-Knot Nematode (Meloidogyne sp.). Biodiversitas 21: 5270-5275. Endophytic bacteria live and colonize in plant tissues without causing disease to their plant host. Among several processes, these bacteria can produce secondary metabolites that can help in the defense of plant host against pathogens. This study aimed to identify endophytic bacteria as biocontrol agents against Meloidogyne sp. in tomato plants. Six endophytic bacteria candidates from the genus Pseudomonas, Arthrobacter, Bacillus, and Serratia were isolated from Solanum Lycopersicum, Psidium guajava, Pinus merkusii, Dendrocalamus asper, Albizia chinensis, and Theobroma cacao L, respectively. The average mortality of Meloidogyne sp. by endophytic bacteria was 70,27% to 95,46%. From these, B. thuringiensis AK08 produced compounds of the secondary metabolites such as flavonoid, phenol, tannins, terpenoids, steroids, saponins, and alkaloids. The best result of the average incubation period, number of galls in the root, number of nematodes at the root, and the number of nematodes in the soil on tomato plant were shown by B. thuringiensis. The major compounds in GC-MS analysis of B. thuringiensis were cholest-5-en-3-ol (3.beta.)-carbonochloridate (25.35%). Bacillus thuringiensis not only has rules as bio-insecticide but also has nematicidal effect.


2015 ◽  
Vol 28 (4) ◽  
pp. 398-407 ◽  
Author(s):  
Taketo Fujimoto ◽  
Takayuki Mizukubo ◽  
Hiroshi Abe ◽  
Shigemi Seo

The root-knot nematode (RKN) is one of the most devastating parasitic nematodes of plants. Although some secondary metabolites released by the host plant play roles as defense substances against parasitic nematodes, the mechanism underlying the induction of such defense responses is not fully understood. We found that sclareol, a natural diterpene known as an antimicrobial and defense-related molecule, inhibited RKN penetration of tomato and Arabidopsis roots. Sclareol induced genes related to ethylene (ET) biosynthesis and signaling and phenylpropanoid metabolism in Arabidopsis roots. In roots of ein2-1, an ET-insensitive mutant line, both sclareol-induced inhibition of RKN penetration and sclareol-induced enhancement of lignin accumulation were abolished. A mutant defective in lignin accumulation did not exhibit such inhibition. Sclareol also activated MPK3 and MPK6, Arabidopsis mitogen-activated protein kinases whose activation is required for triggering ET biosynthesis. Sclareol-induced inhibition of RKN penetration was exhibited by mutants of neither MPK3 nor MPK6. Treatment with a biosynthetic precursor of ET was insufficient compared with sclareol treatment to inhibit RKN penetration, suggesting the existence of an ET-independent signaling pathway leading to RKN resistance. These results suggested that sclareol induced resistance to RKN penetration partially through ET-dependent accumulation of lignin in roots.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 534-540 ◽  
Author(s):  
Jill Schroeder ◽  
Michael J. Kenney ◽  
Stephen H. Thomas ◽  
Leigh Murray

Greenhouse experiments showed that yellow nutsedge shoot number and shoot and root dry weights were reduced by root-knot nematodes and chile peppers. Root-knot nematodes increased and chile peppers decreased the number of yellow nutsedge tubers. Yellow nutsedge tuber germination was reduced by chile peppers but not by root-knot nematodes. Yellow nutsedge established from root-knot nematode-infected tubers produced more tubers than noninfected tubers. Root-knot nematode populations became established on yellow nutsedge root systems when plants were established from tubers previously cultured with root-knot nematodes. Metolachlor stunted chile peppers, eliminated yellow nutsedge, and influenced root-knot nematode populations through reduction of host plant root mass. However, when root-knot nematodes were present, yellow nutsedge tuber germination was not affected by metolachlor. This research indicates that the pests do not exist independently and that their management may be interrelated.


2011 ◽  
Vol 30 (10) ◽  
pp. 1251-1262 ◽  
Author(s):  
Béatrice Collange ◽  
Mireille Navarrete ◽  
Gaëlle Peyre ◽  
Thierry Mateille ◽  
Marc Tchamitchian

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 265
Author(s):  
Richard Dormatey ◽  
Chao Sun ◽  
Kazim Ali ◽  
Tianyuan Qin ◽  
Derong Xu ◽  
...  

Crop production is threatened by low phosphorus (P) availability and weed interference. Obtaining plant genotypes that can utilize Phosphite (Phi) as fertilizer can supplement phosphates (Pi) while providing an environmentally friendly means of weed control. The study was conducted to determine the tolerance and enzymatic behavior of five potato genotypes to PO3. Explants were regenerated in vitro from two nodal cuttings and cultured on Murashige and Skoog (MS) medium under controlled conditions for 30 days. Matured plantlets were subcultured for 20 days in MS medium containing (0.25, 0.5 mM) Phi and Pi and No-P (-Phi + -Pi). The results showed significant genotypic variation in tolerance indices among the five genotypes. Atlantic showed greater tolerance to Phi, with highest total root length (50.84%), root projected area (75.09%), root surface area (68.94%), root volume (33.49%) and number of root forks (75.66%). Phi induced an increasing trend in the levels of hydrogen peroxide in the genotypes with the least effect in Atlantic. The comprehensive evaluation analysis confirmed the tolerance of Atlantic genotype with this ranking; Atlantic, Longshu3, Qingshu9, Longshu6 and Gannong2. Antioxidant enzyme activities and proline content also increased significantly under Phi and No-P treatments. The results suggested that potato genotypes with larger root systems may be more tolerant to Phi than genotypes with smaller root systems.


2017 ◽  
Vol 56 (4) ◽  
pp. 325
Author(s):  
P. D. TASSIS (Π. Δ. ΤΑΣΣΗΣ) ◽  
C. ALEXOPOULOS (Κ. ΑΛΕΞΟΠΟΥΛΟΣ) ◽  
S. K. KRITAS (Σ. Κ. ΚΡΗΤΑΣ) ◽  
E. D. TZIKA (Ε. Δ. ΤΖΗΚΑ) ◽  
K. SAOULIDIS (Κ. ΣΑΟΥΛΙΔΗΣ) ◽  
...  

Mycotoxins are secondary metabolites produced by fungi of various genera, when they grow on agricultural products, especially grains which are mainly used as pig ratios' raw materials, before or after harvest or during transportation or storage. Mycotoxins affect up to 25% of the world's crop production causing extensive economical losses globally. The mycotoxins, which are of high significance for swine populations and are usually found in higher concentrations in swine feed raw materials (cereals, such as corn, barley etc.), are: aflatoxins and especially aflatoxin Bl 5 trichothecenes and principally deoxynivalenol (DON), zearalenone (ZEN), ochratoxins and particularly ochratoxin A (OTA), fumonisins and mainly fumonisin Bj. The fate of a toxin after consumption via feed by pigs depends upon the extent and rate of its absorption, its distribution, its binding or localization in tissues, its biotransformation and its excretion processes, including transmission in swine-derived food products. The rate of each of these events, which contributed to both pharmacokinetics and pharmacodynamics of the toxin, is determined by the chemical and physical properties of the compounds and by interaction with tissue responsible of metabolism or elimination. The aim of this review is to emphasize on the basic stages of the metabolism and the pathways of the toxicokinetics of certain mycotoxins. Moreover, the most frequent clinical signs seen in pigs, due to the most important mycotoxins occurring in swine farms, are pointed out.


2002 ◽  
Vol 20 (2) ◽  
pp. 101-103
Author(s):  
Jerry T. Walker

Abstract Eight herb species were inoculated with two common species of root-knot nematode and grown for 2 months in a greenhouse. Root systems were examined for galls and egg mass production. All herb species were susceptible but developed fewer galls and had lower gall indices than Rutgers tomato. Burnet, chives, valerian and winter savory had few galls or low gall indices. Eggs were produced on all. Chamomile had a high gall index. Chicory, parsley, and sorrel had intermediate indices. Herbs were equally susceptible to the southern (Meloidogyne incognita) and peanut root-knot nematodes (M. arenaria), particularly at the highest inoculum densities. Mean dry weights of inoculated herbs were not always significantly less than the non-inoculated plants, suggesting that some herbs may be tolerant to root-knot nematodes.


Sign in / Sign up

Export Citation Format

Share Document