Widely targeted metabolomics analysis of enriched secondary metabolites and determination of their corresponding antioxidant activities in Elaeagnus orientalis Linn. fruit juice enhanced by Bifidobacterium animalis subsp. lactis HN-3 fermentation

2021 ◽  
pp. 131568
Author(s):  
Yixuan Wang ◽  
Hui Li ◽  
Xiaozhen Li ◽  
Chenxi Wang ◽  
Qianhong Li ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Ziping Ai ◽  
Yue Zhang ◽  
Xingyi Li ◽  
Wenling Sun ◽  
Yanhong Liu

Cistanche deserticola is one of the most precious plants, traditionally as Chinese medicine, and has recently been used in pharmaceutical and healthy food industries. Steaming and drying are two important steps in the processing of Cistanche deserticola. Unfortunately, a comprehensive understanding of the chemical composition changes of Cistanche deserticola during thermal processing is limited. In this study, ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based widely targeted metabolomics analysis was used to investigate the transformation mechanism of Cistanche deserticola active compounds during steaming and drying processes. A total of 776 metabolites were identified in Cistanche deserticola during thermal processing, among which, 77 metabolites were differentially regulated (p < 0.05) wherein 39 were upregulated (UR) and 38 were downregulated (DR). Forty-seven (17 UR, 30 DR) and 30 (22 UR, 8 DR) differential metabolites were identified during steaming and drying, respectively. The most variation of the chemicals was observed during the process of steaming. Metabolic pathway analysis indicated that phenylpropanoid, flavonoid biosynthesis, and alanine metabolism were observed during steaming, while glycine, serine, and threonine metabolism, thiamine metabolism, and unsaturated fatty acid biosynthesis were observed during drying. The possible mechanisms of the chemical alterations during thermal processing were also provided by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Furthermore, the blackening of the appearance of Cistanche deserticola mainly occurred in the steaming stage rather than the drying stage, which is associated with the metabolism of the amino acids. All results indicated that the formation of active compounds during the processing of Cistanche deserticola mainly occurred in the steaming stage.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 897
Author(s):  
Sen Cao ◽  
Zijie Zhang ◽  
Yuhan Sun ◽  
Yun Li ◽  
Huiquan Zheng

The chemical composition of secondary metabolites is important for the quality control of wood products. In this study, the widely targeted metabolomics approach was used to analyze the metabolic profiles of heartwood and sapwood in the red-heart Chinese fir (Cunninghamia lanceolata), with an ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry system. A total of 224 secondary metabolites were detected in the heartwood and sapwood, and of these, flavonoids and phenolic acids accounted for 36% and 26% of the components, respectively. The main pathways appeared to be differentially activated, including those for the biosynthesis of phenylpropanoids and flavonoids. Moreover, we observed highly significant accumulation of naringenin chalcone, dihydrokaempferol, pinocembrin, hesperetin, and other important secondary metabolites in the flavonoid biosynthesis pathway. Our results provide insight into the flavonoid pathway associated with wood color formation in Chinese fir that will be useful for further breeding programs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ruichun Yang ◽  
Yunfeng Li ◽  
Yuanyuan Zhang ◽  
Jun Huang ◽  
Junjie Liu ◽  
...  

Sweet corn (Zea mays convar. saccharata var. rugosa) is a major economic vegetable crop. Different sweet corn cultivars vary largely in flavor, texture, and nutrition. The present study performed widely targeted metabolomics analysis based on the HPLC-MS/MS technology to analyze the metabolic profiles in three sweet corn cultivars widely grown in China. A total of 568 metabolites in the three sweet corn cultivars were detected, of which 262 differential metabolites significantly changed among cultivars. Carbohydrates, organic acids, and amino acids were the majority detected primary metabolites. Organic acids were mainly concentrated on shikimate, benzoic acids, and quinic acid with aromatic groups. And the essential amino acids for the human body, methionine and threonine, were highly accumulated in the high-quality cultivar. In addition, phenylpropanoids and alkaloids were the most enriched secondary metabolites while terpenes were low-detected in sweet corn kernels. We found that the flavonoids exist in both free form and glycosylated form in sweet corn kernels. PCA and HCA revealed clear separations among the three sweet corn cultivars, suggesting distinctive metabolome profiles among three cultivars. The differential metabolites were mapped into flavonoid biosynthesis, phenylpropanoid biosynthesis, biosynthesis of amino acids, and other pathways according to the KEGG classification. Furthermore, we identified skimmin, N ′ ,N ″ -diferuloylspermidine, and 3-hydroxyanthranilic acid as the key quality-related metabolites related to grain quality traits in sweet corn. The results suggested variations of metabolic composition among the three cultivars, providing the reference quality-related metabolites for sweet corn breeding.


Sign in / Sign up

Export Citation Format

Share Document