scholarly journals Identification and co-expression analysis of long noncoding RNAs and mRNAs involved in the deposition of intramuscular fat in Aohan fine-wool sheep

2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Nan Liu ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in longissimus dorsi muscle (LDM) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LDM samples of sheep. Among these, 606 mRNAs and 408 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were primarily enriched in lipid metabolism, lipid transport, regulation of primary metabolic processes and developmental pathways. Based on the results of important KEGG pathways, we obtained six candidate lncRNAs that potentially regulate lipid deposition and constructed an lncRNA-mRNA co-expression network that included MSTRG.792.1- SCD , MSTRG.8227.1- ACAA2 , MSTRG.10679.1- FADS2 , MSTRG.21942.1- PLA2G4E , MSTRG.21380.1- FZD4 and MSTRG.9270.1- ULK1 . We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. Conclusions: Our study provided a list of the lncRNAs and mRNAs related to intramuscular lipid deposition in sheep and laid a foundation for future research on regulatory mechanisms.

2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Nan Liu ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. Three pathways were significantly enriched, namely tight junction, glycosaminoglycan biosynthesis-heparan sulfate/heparin and lysosome. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed an lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4,MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1,MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. Conclusions: Our study provided a list of the lncRNAs and mRNAs related to intramuscular lipid deposition in sheep and laid a foundation for future research on regulatory mechanisms.


2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
Lanlan Li ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR.Conclusions: Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.


2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Nan Liu ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR.Conclusions: Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
Lanlan Li ◽  
...  

Abstract Background Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China’s most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results We identified a total of 26,247 genes and 6935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. Conclusions Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.


2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Nan Liu ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and its level is affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on lncRNAs involved in sheep intramuscular fat deposition is still in its infancy. Aohan fine-wool sheep (AFWS), China's representative meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of intramuscular fat deposition. We identified lncRNAs by RNA sequencing in sheep longissimus dorsi muscle(LDM) samples at two ages: 2 months (Mth-2) and 12 months (Mth-12).Results: We identified a total of 26,247 genes and 6,935 predicted novel lncRNAs in LDM samples of sheep. Among these, 606 mRNAs and 408 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained targeted genes of differentially expressed lncRNAs and performed an enrichment analysis using Gene Ontology(GO) and the Kyoto Encyclopedia of Genes and Genomes(KEGG). We found these targeted mRNAs were primarily enriched in lipid metabolism, lipid transport, regulation of primary metabolic processes and developmental pathways, such as alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, phosphonate and phosphinate metabolism and cell proliferation. Based on the results of this enrichment analysis, we obtained candidate lncRNAs that potentially regulate lipid deposition and constructed a lncRNA-mRNA co-expression network. We speculated that these lncRNAs have important regulatory roles in intramuscular fat deposition. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of sequencing results by qRT-PCR.Conclusions: Our study provided a list of the lncRNAs and mRNAs related to intramuscular lipid deposition in sheep and lay the foundation for future research on regulatory mechanisms.


2020 ◽  
Vol 21 (5) ◽  
pp. 1732 ◽  
Author(s):  
Qianqian Li ◽  
Ziying Huang ◽  
Wenjuan Zhao ◽  
Mengxun Li ◽  
Changchun Li

Intramuscular fat (IMF) content is closely related to various meat traits, such as tenderness, juiciness, and flavor. The IMF content varies considerably among pig breeds with different genetic backgrounds. Long intergenic non-coding RNAs (lincRNAs) have been widely identified in many species and found to be an important class of regulators that can participate in multiple biological processes. However, the mechanism behind lincRNAs regulation of pig IMF content remains unknown and requires further study. In our study, we identified a total of 156 lincRNAs in the longissimus dorsi muscle of Wei (fat-type) and Yorkshire (lean-type) pigs using previously published data. These identified lincRNAs have shorter transcript length, longer exon length, lower exon number, and lower expression level as compared with protein-coding transcripts. We predicted potential target genes (PTGs) that are potentially regulated by lincRNAs in cis or trans regulation. Gene ontology and pathway analyses indicated that many potential lincRNAs target genes are involved in IMF-related processes or pathways, such as fatty acid catabolic process and adipocytokine signaling pathway. In addition, we analyzed quantitative trait locus (QTL) sites that differentially expressed lincRNAs (DE lincRNAs) between Wei and Yorkshire pigs co-localized. The QTL sites where DE lincRNAs co-localize are mostly related to IMF content. Furthermore, we constructed a co-expressed network between DE lincRNAs and their differentially expressed PTGs (DEPTGs). On the basis of their expression levels, we suggest that many DE lincRNAs can affect IMF development by positively or negatively regulating their PTGs. This study identified and analyzed some lincRNAs- and PTGs-related IMF development of the two pig breeds and provided new insight into research on the roles of lincRNAs in the two types of breeds.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2006
Author(s):  
Hongyu Liu ◽  
Ibrar Muhammad Khan ◽  
Huiqun Yin ◽  
Xinqi Zhou ◽  
Muhammad Rizwan ◽  
...  

The mRNAs and long non-coding RNAs axes are playing a vital role in the regulating of post-transcriptional gene expression. Thereby, elucidating the expression pattern of mRNAs and long non-coding RNAs underlying testis development is crucial. In this study, mRNA and long non-coding RNAs expression profiles were investigated in 3-month-old calves and 3-year-old mature bulls’ testes by total RNA sequencing. Additionally, during the gene level analysis, 21,250 mRNAs and 20,533 long non-coding RNAs were identified. As a result, 7908 long non-coding RNAs (p-adjust < 0.05) and 5122 mRNAs (p-adjust < 0.05) were significantly differentially expressed between the distinct age groups. In addition, gene ontology and biological pathway analyses revealed that the predicted target genes are enriched in the lysine degradation, cell cycle, propanoate metabolism, adherens junction and cell adhesion molecules pathways. Correspondingly, the RT-qPCR validation results showed a strong consistency with the sequencing data. The source genes for the mRNAs (CCDC83, DMRTC2, HSPA2, IQCG, PACRG, SPO11, EHHADH, SPP1, NSD2 and ACTN4) and the long non-coding RNAs (COX7A2, COX6B2, TRIM37, PRM2, INHBA, ERBB4, SDHA, ATP6VOA2, FGF9 and TCF21) were found to be actively associated with bull sexual maturity and spermatogenesis. This study provided a comprehensive catalog of long non-coding RNAs in the bovine testes and also offered useful resources for understanding the differences in sexual development caused by the changes in the mRNA and long non-coding RNA interaction expressions between the immature and mature stages.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 397
Author(s):  
Dadong Deng ◽  
Xihong Tan ◽  
Kun Han ◽  
Ruimin Ren ◽  
Jianhua Cao ◽  
...  

The development of the placental fold, which increases the maternal–fetal interacting surface area, is of primary importance for the growth of the fetus throughout the whole pregnancy. However, the mechanisms involved remain to be fully elucidated. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) are a new class of RNAs with regulatory functions and could be epigenetically regulated by histone modifications. In this study, 141 lncRNAs (including 73 up-regulated and 68 down-regulated lncRNAs) were identified to be differentially expressed in the placentas of pigs during the establishment and expanding stages of placental fold development. The differentially expressed lncRNAs and genes (DElncRNA-DEgene) co-expression network analysis revealed that these differentially expressed lncRNAs (DElncRNAs) were mainly enriched in pathways of cell adhesion, cytoskeleton organization, epithelial cell differentiation and angiogenesis, indicating that the DElncRNAs are related to the major events that occur during placental fold development. In addition, we integrated the RNA-seq (RNA sequencing) data with the ChIP-seq (chromatin immunoprecipitation sequencing) data of H3K4me3/H3K27ac produced from the placental samples of pigs from the two stages (gestational days 50 and 95). The analysis revealed that the changes in H3K4me3 and/or H3K27ac levels were significantly associated with the changes in the expression levels of 37 DElncRNAs. Furthermore, several H3K4me3/H3K27ac-lncRNAs were characterized to be significantly correlated with genes functionally related to placental development. Thus, this study provides new insights into understanding the mechanisms for the placental development of pigs.


2008 ◽  
Vol 114 (12) ◽  
pp. 699-706 ◽  
Author(s):  
Chunxiang Zhang

miRNAs (microRNAs) comprise a novel class of endogenous, small, non-coding RNAs that negatively regulate gene expression via degradation or translational inhibition of their target mRNAs. Recent studies have demonstrated that miRNAs are highly expressed in the cardiovascular system. Although we are currently in the initial stages of understanding how this novel class of gene regulators is involved in cardiovascular biological functions, a growing body of exciting evidence suggests that miRNAs are important regulators of cardiovascular cell differentiation, growth, proliferation and apoptosis. Moreover, miRNAs are key modulators of both cardiovascular development and angiogenesis. Consequently, dysregulation of miRNA function may lead to cardiovascular diseases. Indeed, several recent reports have demonstrated that miRNAs are aberrantly expressed in diseased hearts and vessels. Modulating these aberrantly expressed miRNAs has significant effects on cardiac hypertrophy, vascular neointimal lesion formation and cardiac arrhythmias. Identifying the roles of miRNAs and their target genes and signalling pathways in cardiovascular disease will be critical for future research. miRNAs may represent a new layer of regulators for cardiovascular biology and a novel class of therapeutic targets for cardiovascular diseases.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 536 ◽  
Author(s):  
Xiaobo Zhao ◽  
Liming Gan ◽  
Caixia Yan ◽  
Chunjuan Li ◽  
Quanxi Sun ◽  
...  

Long non-coding RNAs (lncRNAs) are involved in various regulatory processes although they do not encode protein. Presently, there is little information regarding the identification of lncRNAs in peanut (Arachis hypogaea Linn.). In this study, 50,873 lncRNAs of peanut were identified from large-scale published RNA sequencing data that belonged to 124 samples involving 15 different tissues. The average lengths of lncRNA and mRNA were 4335 bp and 954 bp, respectively. Compared to the mRNAs, the lncRNAs were shorter, with fewer exons and lower expression levels. The 4713 co-expression lncRNAs (expressed in all samples) were used to construct co-expression networks by using the weighted correlation network analysis (WGCNA). LncRNAs correlating with the growth and development of different peanut tissues were obtained, and target genes for 386 hub lncRNAs of all lncRNAs co-expressions were predicted. Taken together, these findings can provide a comprehensive identification of lncRNAs in peanut.


Sign in / Sign up

Export Citation Format

Share Document