scholarly journals Nonlinear Dynamic Study of Oscillation System Featuring Quasi-Zero and Asymmetric Stiffness

Author(s):  
Thanh Danh Le ◽  
Minh Ky Nguyen ◽  
Ngoc Yen Phuong Vo

Abstract This paper will broaden our previous works about the asymmetric and quasi-zero stiffness oscillator named AQZSO. In this paper, the dynamic stiffness of the AQZSO will be investigated. Then, the condition for which the minimum dynamic stiffness is quasi-zero around the equilibrium position is also determined. By using Multi-Scale method, the fundamental resonance response of the AQZSO subjected to the vibrating base is analyzed, in which the dynamic stiffness is expressed as a fifth-order approximate polynomial through expanding Taylor series. The stability of the response is then found out via nonlinear Routh-Herwitz criterion. Moreover, because of existing the sliding friction between the cylinder and piston, the nonlinear and varying-time dynamic characteristics, the complex dynamic response of the AQZSO is the need for discovery by performing direct integration of the original dynamic equation through using 5th-order Runge-Kutta algorithm. In this work, the friction force model of cylinder will be identified through virtual prototyping technique and genetic algorithm. Additionally, the Poincáre map is also employed to analyze the bifurcation phenomenon, coexistence of multiple solutions. The traction basin of the period-1, period-2 and period-3 solution is determined, indicating that the attractor basin is influenced by the asymmetric of the stiffness curve. This research will offer a useful insight to design low frequency vibration isolation systems.

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Ali Abolfathi ◽  
M. J. Brennan ◽  
T. P. Waters ◽  
B. Tang

Nonlinear isolators with high-static-low-dynamic-stiffness have received considerable attention in the recent literature due to their performance benefits compared to linear vibration isolators. A quasi-zero-stiffness (QZS) isolator is a particular case of this type of isolator, which has a zero dynamic stiffness at the static equilibrium position. These types of isolators can be used to achieve very low frequency vibration isolation, but a drawback is that they have purely hardening stiffness behavior. If something occurs to destroy the symmetry of the system, for example, by an additional static load being applied to the isolator during operation, or by the incorrect mass being suspended on the isolator, then the isolator behavior will change dramatically. The question is whether this will be detrimental to the performance of the isolator and this is addressed in this paper. The analysis in this paper shows that although the asymmetry will degrade the performance of the isolator compared to the perfectly tuned case, it will still perform better than the corresponding linear isolator provided that the amplitude of excitation is not too large.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhanyong Li ◽  
Qian Chen ◽  
Fengshou Gu ◽  
Andrew Ball

A mechanical molecular spring isolator (MMSI) is proposed for the purpose of isolating the low-frequency vibration of a heavy payload. The MMSI is a passive vibration isolation technique mimicking molecular spring isolator characteristics of high-static-low-dynamic stiffness (HSLDS). An MMSI consists of a piston-cylinder container filled with the liquid and some hydraulic spring accumulators. The piston would support a lump of mass and be subjected to a specific external vibration excitation force. Those accumulators can get intercommunication by the liquid to produce the transformation from high static stiffness to low dynamic stiffness. The stiffness model of the MMSI with several identical accumulators is established based on the hydrostatic law. After that, some parameters that significantly influence the stiffness characteristics are studied. Results show that the stiffness property of this kind of MMSI demonstrates a piecewise linearity of three segments. It applies the averaging method to acquire amplitude-frequency and phase-frequency relationships of the piecewise linear vibration isolation system. An inevitable jump phenomenon may occur when the exciting force reaches the critical value. The vibration isolation performance is evaluated by energy transmissibility. Finally, an experimental prototype was designed to carry out quasi-static and dynamic experiments to verify the stiffness model and the dynamic properties as an HSLDS vibration isolator.


2021 ◽  
Vol 12 (2) ◽  
pp. 751-764
Author(s):  
Zhihong Lin ◽  
Mingzhong Wu

Abstract. In this paper, a novel structure of a controlled multi-channel semi-active magnetorheological (MR) fluid mount is proposed, including four controlled channels and one rate-dip channel. Firstly, the magnetic circuit analysis, rate-dip channel optimization design, and MR fluid mount damping analysis are given. Secondly, the mathematical model of the controlled multi-channel semi-active MR fluid mount is constructed. We analyze the effect of controlled multi-channel closing on the dynamic characteristics of the mounts and the effect of the presence or absence of the rate-dip channel on the low-frequency isolation of the mount. Finally, the controlled multi-channel semi-active MR fluid mount was applied to the 1/4 vehicle model (a model consisting of an engine, a single engine mount, a single suspension and a vehicle frame), with the transmissibility of the engine relative to the vehicle frame at low frequency and the transmissibility of the engine reciprocating unbalanced force to the vehicle frame magnitude at high frequency as the evaluation index. Numerical simulation shows the following points. (1) The controllable multi-channel semi-active MR fluid mount can achieve adjustable dynamic stiffness and damping with applied 2 A current to different channels. (2) With known external excitation source, applied currents to different controllable channels can achieve the minimum transmissibility and meet the mount wide-frequency vibration isolation requirement, while adding a rate-dip channel can improve the low-frequency vibration isolation performance of the MR fluid mount. (3) Switching and closing different controllable channels in the 1/4 vehicle model can achieve the minimum transmissibility of low-frequency engine vibrations relative to the vehicle frame and high-frequency engine vibrations reciprocating an unbalanced force to the vehicle frame. Therefore, the design of the controllable multi-channel semi-active MR fluid mount can meet the wide-frequency isolation.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012028
Author(s):  
Zhirong Yang ◽  
Lintao Li ◽  
Jiacheng Yao ◽  
Qingkai Wang

Abstract A torsion vibration isolator composed of oblique springs with high-static-low-dynamic stiffness (HSLDS) is proposed to attenuate the transmission of torsion vibration along the shipping shaft in this paper. It is good at in low frequency vibration isolation as it can significantly reduce the resonance frequency of the system with the same load capability. Firstly, the model of HSLDS torsion vibration isolator is introduced in this paper. Secondly, the non-dimensional torsion stiffness is formulated using mechanics theory, and the HSLDS characteristic of designed torsion vibration isolator is verified. Finally, the torque transmissibility is analyzed using the Increment Harmonic Balance (IHB) method, and the effects of the system parameters on it are analyzed. The results show that the resonant frequency increases accordingly as the stiffness ratio and the excitation torque are increased. However, the peak value of the torsion transmissibility is decreased as the damper ratio increasing.


2005 ◽  
Vol 24 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Chris Morison ◽  
Anbin Wang ◽  
Oliver Bewes

Low frequency ground or structure-borne sound and vibration emission from urban rail transport systems can be greatly reduced by reducing the stiffness of the rail fastening. Estimates and models of the efficacy of such systems require accurate measurements of their dynamic stiffness over the frequency range of interest, and European Standards make recommendations for such measurements. This paper describes these methods and their shortcomings when applied to modern complete assemblies with low stiffness, one problem of which is the contribution of inertial forces at frequencies approaching and above the natural resonance of the system. This paper suggests a method for correcting for this inertial force, and tests this correction with the driving point method of dynamic stiffness measurement when applied to the Pandrol VANGUARD resilient rail fastening. The preliminary tests effectively triple the frequency range of valid measurements, a result which could be improved when applied to stiffer systems or with further improvements to the test equipment.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Qiao Sun ◽  
Robert A. Wolkow ◽  
Mark Salomons

The extreme sensitivity of a scanning probe microscope demands an exceptional noise cancellation device that could effectively cut off a wide range of vibration noise. Existing commercial devices, although excellent in canceling high frequency noise, commonly leave low frequency vibration unattenuated. We design an add-on active stage that can function together with a standalone existing active stage. The objective is to provide a higher level of noise cancellation by lowering the overall system cut-off frequency. This study is concerned with the theoretical aspects of the coupling characteristics involved in stacking independently designed stages together to form a two-stage isolator. Whether an add-on stage would pose a stability threat to the existing stage needs to be addressed. In addition, we explore the use of coupling effects to optimize the performance of the overall system.


2021 ◽  
Vol 88 (5) ◽  
Author(s):  
Mingkai Zhang ◽  
Jinkyu Yang ◽  
Rui Zhu

Abstract In this research, we aim to combine origami units with vibration-filtering metastructures. By employing the bistable origami structure as resonant unit cells, we propose metastructures with low-frequency vibration isolation ability. The geometrical nonlinearity of the origami building block is harnessed for the adjustable stiffness of the metastructure’s resonant unit. The quantitative relationship between the overall stiffness and geometric parameter of the origami unit is revealed through the potential energy analysis. Both static and dynamic experiments are conducted on the bistable origami cell and the constructed beam-like metastructure to verify the adjustable stiffness and the tunable vibration isolation zone, respectively. Finally, a two-dimensional (2D) plate-like metastructure is designed and numerically studied for the control of different vibration modes. The proposed origami-based metastructures can be potentially useful in various engineering applications where structures with vibration isolation abilities are appreciated.


Sign in / Sign up

Export Citation Format

Share Document