scholarly journals Establishment of Standard Human Blood Vessel Model Based on Image Registration and Fitting Technology

Author(s):  
Dinghao Luo ◽  
Junxiang Wu ◽  
Ning Wang ◽  
Lei Wang ◽  
Kai Xie ◽  
...  

Abstract Purpose: The blood vessel gives key information for pathological changes in a variety of diseases. In view of the crucial role of blood vessel structure, the present study aims to establish a digital human blood vessel standard model for diagnosing blood vessel-related diseases. Methods: The present study recruited eight healthy volunteers, and reconstructed their bilateral upper extremity arteries according to CTA. The reconstructed vessels were segmented, registered, and merged into a bunch. After being cut by continuous cut planes, the dispersion of the blood vessel bunches on each cut plane were calculated. Results: The results demonstrated that the middle segment of the brachial artery, the proximal segment of the ulnar artery, and the middle and distal segments of the radial artery had a low degree of dispersion. A standard blood vessel model was finally established by the integral method using the low-dispersion segments above. The accuracy of the standard blood vessel model was also verified by an actual contralateral vessel, which revealed that the deviation between the model and the actual normal contralateral brachial artery was relatively small. Conclusion: The structure of the model was highly accordant with the real ones, which can be of great help in evaluating the blood vessel changes in blood vessel-related diseases, bone and soft-tissue tumors, and creating accurate surgical plans.

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 205
Author(s):  
Carmen Griñan-Lison ◽  
Jose L. Blaya-Cánovas ◽  
Araceli López-Tejada ◽  
Marta Ávalos-Moreno ◽  
Alba Navarro-Ocón ◽  
...  

Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on “redoxidomics” or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.


1951 ◽  
Vol 21 (5) ◽  
pp. 506-512 ◽  
Author(s):  
Edward J. Beattie ◽  
Francis N. Cooke ◽  
John S. Paul ◽  
James A. Orbison

2021 ◽  
Vol 22 (6) ◽  
pp. 2804
Author(s):  
Yasuo Yoshitomi ◽  
Takayuki Ikeda ◽  
Hidehito Saito-Takatsuji ◽  
Hideto Yonekura

Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yohei Tsukada ◽  
Fumitaka Muramatsu ◽  
Yumiko Hayashi ◽  
Chiaki Inagaki ◽  
Hang Su ◽  
...  

AbstractAngiogenesis contributes to numerous pathological conditions. Understanding the molecular mechanisms of angiogenesis will offer new therapeutic opportunities. Several experimental in vivo models that better represent the pathological conditions have been generated for this purpose in mice, but it is difficult to translate results from mouse to human blood vessels. To understand human vascular biology and translate findings into human research, we need human blood vessel models to replicate human vascular physiology. Here, we show that human tumor tissue transplantation into a cranial window enables engraftment of human blood vessels in mice. An in vivo imaging technique using two-photon microscopy allows continuous observation of human blood vessels until at least 49 days after tumor transplantation. These human blood vessels make connections with mouse blood vessels as shown by the finding that lectin injected into the mouse tail vein reaches the human blood vessels. Finally, this model revealed that formation and/or maintenance of human blood vessels depends on VEGFR2 signaling. This approach represents a useful tool to study molecular mechanisms of human blood vessel formation and to test effects of drugs that target human blood vessels in vivo to show proof of concept in a preclinical model.


2009 ◽  
Vol 10 (3) ◽  
pp. 282-288 ◽  
Author(s):  
Guerman Molostvov ◽  
Rosemary Bland ◽  
Daniel Zehnder

2007 ◽  
Vol 144 (3) ◽  
pp. 428-431 ◽  
Author(s):  
O. M. Panasenko ◽  
T. V. Vakhrusheva ◽  
I. I. Vlasova ◽  
A. V. Chekanov ◽  
Yu. V. Baranov ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Alexander J. Hron ◽  
Atsushi Asakura

Rhabdomyosarcoma (RMS) is an aggressive family of soft tissue tumors that most commonly manifests in children. RMS variants express several skeletal muscle markers, suggesting myogenic stem or progenitor cell origin of RMS. In this review, the roles of both recently identified and well-established microRNAs in RMS are discussed and summarized in a succinct, tabulated format. Additionally, the subtypes of RMS are reviewed along with the involvement of basic helix-loop-helix (bHLH) proteins, Pax proteins, and microRNAs in normal and pathologic myogenesis. Finally, the current and potential future treatment options for RMS are outlined.


Sign in / Sign up

Export Citation Format

Share Document