Dielectric Behavior of Mechano-chemically Synthesized [(CH3NH3)3Bi2Br9]: A Lead Free Hybrid Perovskite

Author(s):  
Swagatalaxmi Pujaru ◽  
Priyabrata Sadhukhan ◽  
Basudev Ghosh ◽  
Arup Dhara ◽  
Sachindranath Das

Abstract Lead free hybrid halide perovskite (CH3NH3)3Bi2Br9 has been successfully synthesized by mechano-chemical method. The microstructure analysis by Rietveld’s refinement method revealed that the crystal belongs to trigonal system with space group P3 ̅m1. The obtained microstructural parameters are well in agreement with the previously published data. Temperature-dependent ac conductivity, impedance spectroscopy, and complex dielectric properties have been investigated in detail. The negative temperature coefficient of resistance behaviour reveals the semiconducting nature of the materials. The complex impedance spectroscopy also supports the semiconducting nature of the sample with activation energy for conduction ~0.38 eV.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050081
Author(s):  
Subrat Kumar Barik ◽  
A. R. Atique Ulla

A single-phase lead-free ferroelectric compound, Fe[Formula: see text](NaLi)[Formula: see text]TiO3, is found at room temperature. The solid state reaction technique helps to process the sample at the calcination and sintering temperatures of 900 and 950[Formula: see text][Formula: see text]C for 4 h respectively. The desired phase and crystal structure formation of the prepared sample are confirmed by analysis of X-ray diffraction (XRD) data and are found to be in orthorhombic structure. The correlation among phase formation and physical properties has been established by using complex impedance spectroscopy (CIS) method over a wide range of frequencies (from 100 Hz to 1 MHz) and different temperatures (25–280[Formula: see text][Formula: see text]C). The overlap depressed semicircular arcs represent the association of grain and grain boundary effects in the material. Activation energy [Formula: see text] is noted to be 1 eV for the prepared sample. The frequency dependent ac conductivity is followed by Jonscher’s universal power law. DC conductivity versus temperature graph also indicates the negative temperature coefficient of resistance (NTCR) behavior of the material.



2012 ◽  
Vol 02 (03) ◽  
pp. 1250008 ◽  
Author(s):  
B. PARIJA ◽  
S. PANIGRAHI ◽  
T. BADAPANDA ◽  
T. P. SINHA

We report the temperature and frequency dependence impedance spectroscopy of (1 - x) ( Bi 0.5 Na 0.5) TiO 3-x BaTiO 3 (abbreviated as BNT–BT) ceramics with 0 ≤ x ≤ 0.07 prepared by conventional solid-state route. X-ray diffraction analysis indicated that a solid solution is formed when BaTiO3 diffuses into the (Bi0.5Na0.5)TiO3 lattice and a morphotropic phase boundary between rhombohedral and tetragonal locates at x = 0.07. The microstructure indicated that the grain size reduces and the shape changes from rectangular to quasi-spherical with increase in BaTiO3 content. Complex Impedance Spectroscopy analysis suggested the presence of temperature-dependent relaxation process in the materials. The modulus mechanism indicated the non-Debye type of conductivity relaxation in the materials, which is supported by impedance data. The activation energies have been calculated from impedance, electric modulus studies and dc conductivity which suggests that the conductions are ionic in nature. The activation energy increases with increase of BT content up to x = 0.05 and decreases at x = 0.07 which also indicates the presence of morphotropic phase boundary at x = 0.07.



2010 ◽  
Vol 17 (01) ◽  
pp. 27-32 ◽  
Author(s):  
SANG-HO MOON ◽  
YONG-SU HAM ◽  
JUNG-HYUK KOH

BST ceramics with doping of 1, 3, and 5 wt.% ZnBO were prepared by the conventional mixed oxide method and sintered at 1100°. X-ray diffraction analyses were carried out to verify the structural properties. 1, 3, and 5 wt.% ZnBO doped BST ceramics were crystallized with weak tetragonal structure at 1100°C. The grain growth behavior and shapes were investigated by scanning electron microscopy images. The electrical properties of 1, 3, and 5 wt.% ZnBO doped BST ceramics were investigated by impedance spectroscopy at the different temperatures (350, 375, and 400°C). Impedance spectroscopy data presented in Nyquist plot show the existence of both grain and grain boundary effects in all specimens. 1, 3, and 5 wt.% ZnBO doped BST ceramics showed negative temperature coefficient of resistance (NTCR). Also, the capacitances and resistances of grains and grain boundaries for 1, 3, and 5 wt.% doped BST ceramics were simulated through equivalent circuit with the parallelly connected capacitors and resistors. The capacitance and resistance were decreased when temperature and ZnBO dopants were increased.



2012 ◽  
Vol 6 (4) ◽  
pp. 201-207 ◽  
Author(s):  
Ahcène Chaouchi ◽  
Sadia Kennour

The AC complex impedance spectroscopy technique has been used to obtain the electrical parameters of polycrystalline sample of (Ba0.85Ca0.15) (Ti0.9Zr0.1)O3 in a wide frequency range at different temperatures. This sample was prepared by a high temperature solid-state reaction technique and single phase formation was confirmed by X-ray diffraction technique. This study was carried out by the means of simultaneous analysis of impedance, modulus, and electrical conductivity. The Cole-Cole (Nyquist) plots suggest that the grains and grain boundaries are responsible in the conduction mechanism of the material at high temperature. The Cole- Cole (Nyquist) plot studies revealed the presence of grain and grain boundary effect at 485 ?C. On the other hand, it showed only the presence of grain boundary component of the resistivity at 535 ?C. Complex impedance analysis indicated the presence of non-Debye type dielectric relaxation. The bulk resistance of the material decreases with rise in temperature similar to a semiconductor, and the Cole-Cole (Nyquist) plot showed the negative temperature coefficient of resistance (NTCR) character of (Ba0.85Ca0.15 )(Ti0.9Zr0.1 )O3. The value of activation energy is found to be 0.7433 eV, which suggests that the conduction may be the result of defect and charge carriers present in the materials.



2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Praveen Khatri ◽  
Banarji Behera ◽  
V. Srinivas ◽  
R. N. P. Choudhary

The polycrystalline sample of was prepared by a high-temperature solid-state reaction technique. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (  Hz). The real and imaginary parts of complex impedance trace semicircles in the complex plane. The temperature-dependent plots reveal the presence of both bulk and grain boundary effects above C. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The modulus analysis suggests a possible hopping mechanism for electrical transport processes of the material. The nature of variation of dc conductivity suggests the Arrhenius type of electrical conductivity.



Sign in / Sign up

Export Citation Format

Share Document