scholarly journals A study on synthesis and characterization of Dy-dopedLa0.6Sr0.4Co0.2Fe0.8O3-δvia co precipitation method

2020 ◽  
Author(s):  
Negin Mohammadi ◽  
Zahra Khakpour ◽  
Amir Maghsoudipour ◽  
Aida Faeghinia

Abstract The perovskite Lanthanum Strontium Cobalt Ferrite (LSCF) is investigated as the cathode material used in intermediate temperature solid oxide fuel cells (IT-SOFCs). In the present study, La0.6-xDyxSr0.4Co0.2Fe0.8O3-δ(x= 0, 0.3, 0.6) was synthesized through co precipitation method. The obtained precipitate was calcined at500, 700,900and 1000°С. Phase characterization of synthesized LSCF and LDySCF powder before and after heat treatment at 700°Сwas carried out by X-ray diffraction (XRD) analysis. XRD patterns revealed that the perovskite phase was obtained at 700 °С in all calcined samples. Chemical bond study to investigate synthesis process was done using the Fourier transform infrared spectroscopy technique. Thermalanalysis of DTA and TG has been utilized to investigate how the calcination temperature affects the peroveskite phase formation. According to the STA results, the perovskite phase formation started at 551°Сafterwarditcompleted at 700°С.The density values of synthesized powders were 6.10, 6.11 and 6.37g.cm-3for the undoped and doped samples calcined at 700°С. Powder morphology was studied by Field emission scanning electron microscopy. (FE-SEM) micrographs showed the spherical shaped particles with the average particle size of 24-131nm.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Negin Mohammadi ◽  
Zahra Khakpour ◽  
Amir Maghsoudipour ◽  
Aida Faeghinia

The perovskite Lanthanum Strontium Cobalt Ferrite (LSCF) is investigated as the cathode material used in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In the present study, La0.6−xDyxSr0.4Co0.2Fe0.8O3−δ (x = 0, 0.3, 0.6) was synthesized through the coprecipitation method. The obtained precipitate was calcined at 500, 700, 900, and 1000°С. Phase characterization of the synthesized LSCF and LDySCF powder before and after heat treatment at 700°С was carried out by X-ray diffraction (XRD) analysis. XRD patterns revealed that the perovskite phase was obtained at 700°С in all calcined samples. Chemical bond study to investigate the synthesis process was conducted using the Fourier transform infrared spectroscopy technique. Thermal analysis of DTA and TG has been utilized to investigate how the calcination temperature affects the perovskite phase formation. According to the STA results, the perovskite phase formation started at 551°С and completed at 700°С. The density values of synthesized powders were 6.10, 6.11, and 6.37 g·cm−3for the undoped and doped samples calcined at 700°С. Powder morphology was studied by field emission scanning electron microscopy (FE-SEM). The micrographs showed the spherical-shaped particles with the average particle size of 24–131 nm.


2011 ◽  
Vol 284-286 ◽  
pp. 839-843 ◽  
Author(s):  
Li Li Wang ◽  
Jin Chen ◽  
Guang Cheng Yang ◽  
Fu De Nie

A carbonate precursor with high sintering activity was prepared by co-precipitation method under ultrasonic radiation. This precursor precipitant completely transformed to pure YAG phase after being calcined at 900 °C for 4 h. The properties of YAG nanopowders obtained under different synthetic process were studied by XRD, TG-DSC, FT-IR and SEM. The results show that the ultrasonic radiation can fine the precursor and reduce its agglomeration. YAG nanopowders with an average particle size of about 60 nm were obtained and particles were sphere-shaped with good dispersity.


2013 ◽  
Vol 12 (1) ◽  
pp. 31-37
Author(s):  
Priya L

A ZnS nanoparticle doped with Mn2+ is synthesized in aqueous media and PVA using chemical co-precipitation method. This colloid was analyzed using uv-vis spectrophotometry. It is observed that the absorption peak blue shifts as compared to the bulk absorption of ZnS suggesting the nanoparticle formation. The energy gaps of these nanoparticles were calculated from the uv-vis spectra. The average particle size analysis is carried out using XRD. Photoluminescence of PVA/ ZnS:Mn2+ is studied. It is observed that the composite sample exhibits an orange emission peak as is reported for pure ZnS: Mn2+.


2010 ◽  
Vol 93-94 ◽  
pp. 153-156 ◽  
Author(s):  
Pusit Pookmanee ◽  
Sumintra Paosorn ◽  
Sukon Phanichphant

Bismuth vanadate powder was synthesized by a chemical co-precipitation method. Bismuth nitrate and ammonium vanadate were used as the starting precursors. The yellow precipitated powder was formed after adding ammonium hydroxide until the pH of final solution was 7. The powder was filtered and dried at 60 °C for 24h and calcined at 200-400 °C for 2h. The phase of bismuth vanadate powder was studied by X-ray diffraction (XRD). A single phase of monoclinic structure was obtained after calcinations at 200-400 °C for 2h. The morphology and particle size of bismuth vanadate powder were investigated by scanning electron microscopy (SEM). The particle was irregular in shape and highly agglomerated with an average particle size of 0.5 µm in width and 1.5 µm in length.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
S. Mary Margaret ◽  
Albin John P. Paul Winston ◽  
S. Muthupandi ◽  
P. Shobha ◽  
P. Sagayaraj

A detailed comparative study on the synthesis process of coral-like CuO/Cu2O nanorods (NRs) and nanopolycrystals (NPCs) fabricated on Cu foil employing aqueous electrolyte via potentiostatic (POT) and galvanostatic (GAL) modes is discussed. The structural, morphological, thermal, compositional, and molecular vibration of the prepared CuO/Cu2O nanostructures was characterized by XRD, HRSEM, TG/DTA, FTIR, and EDX techniques. XRD analysis confirmed the crystalline phase of the formation of monoclinic CuO and cubic Cu2O nanostructures with well-defined morphology. The average particle size was found to be 21.52 nm and 26.59 nm for NRs (POT) and NPCs (GAL), respectively, and this result is corroborated from the HRSEM analysis. POT synthesized nanoparticle depicted a higher thermal stability up to 600°C implying that the potentiostatically grown coral-like NRs exhibit a good crystallinity and well-ordered morphology.


Author(s):  
Mohammed Sabar Al-lami ◽  
Malath H. Oudah ◽  
Firas A. Rahi

This study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formula was obtained with lowest average particle size of 84.05. This formula was studied for compatibility by FTIR and DSC, surface morphology by FESEM and crystalline state by XRPD. Then domperidone nanoparticles were formulated into a simple capsule dosage form in order to study of the in vitro release of drug from nanoparticles in comparison raw drug and mixture of polymer:drug ratios of 2:1. The release of domperidone from best formula was highly improved with a significant (p? 0.05) increase.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 874
Author(s):  
Haifeng Wang ◽  
Jianwei Lu ◽  
Ruoxuan Wang ◽  
Yungu Dong ◽  
Linfeng Ding

The synthesis process has a significant influence on the properties of Ca1-xTiO3:Eu3+x phosphors; thus, an optimized process will lead to a better performance of the Ca1-xTiO3:Eu3+x phosphors. In this work, the feasibility of synthesizing the Ca1-xTiO3:Eu3+x phosphor with a good luminescent performance by combining the chemical co-precipitation method and microwave-assisted sintering was studied. The precursor of Ca1-xTiO3:Eu3+x phosphors were prepared by the chemical co-precipitation method. To find an optimized process, we applied both of the traditional (furnace) sintering and the microwave-assisted sintering to synthesize the Ca1-xTiO3:Eu3+x phosphors. We found out that a sintering power of 528 W for 50 min (temperature around 950 °C) by a microwave oven resulted in similar emission intensity results compared to traditional furnace sintering at 900 °C for 2.5 h. The synthesized Ca1-xTiO3:Eu3+x phosphors has an emission peak at 617 nm (5D0→7F2), which corresponds to the red light band. This new synthesized method is an energy efficient, time saving, and environmentally friendly means for the preparation of Ca1-xTiO3:Eu3+x red phosphor with good luminescent performance.


2015 ◽  
Vol 752-753 ◽  
pp. 148-153
Author(s):  
M.M. Nassar ◽  
Taha Ebrahiem Farrag ◽  
M.S. Mahmoud ◽  
Sayed Abdelmonem

Calcium carbonate nanoparticles and nanorods were synthesized by precipitation from saturated sodium carbonate and calcium nitrate aqueous solutions through co precipitation method. A new rout of synthesis was done by both using pulsed mixing method and controlling the addition of calcium nitrate. The effect of the agitation speed, and the temperature on particle size and morphology were investigated. Particles were characterized using X-ray Microanalysis, X-ray analysis (XRD) and scanning electron microscopy (SEM). The results indicated that increasing the mixer rotation speed from 3425 to 15900 (rpm) decreases the average particle size to 64±7 nm. A rapid nucleation then aggregation induced by excessive shear force phenomena could explain this observation. Moreover, by increasing the reaction temperature, the products were converted from nanoparticle to nanorods. The maximum attainable aspect ratio was 6.23 at temperature of 75°C and rotation speed of 3425. Generally, temperature raise promoted a significant homoepitaxial growth in one direction toward the formation of calcite nanorods. Overall, this study can open new avenues to control the morphology of the calcium carbonate nanostructures.


2011 ◽  
Vol 236-238 ◽  
pp. 2076-2079
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Yong Huang ◽  
Li Guo Ma ◽  
Feng Liu

The introduction of biomineralization was coupled with the co-precipitation synthesis process of nano-hydroxyapatite with the addition of chondroitin sulfate as a template agent. The effect of a variety of processing conditions on the properties of final hydroxyapatite (HA) product was investigated by orthogonal design. The ratio of calcium to phosphorus was detected by chemical analysis, the phase composition was evaluated by X-ray diffraction (XRD), and the powder morphology was characterized by transmission electron microscope (TEM). The process scheme, moreover, was optimized by the analysis of four aspects which may have different extent of influence on product properties. It can be concluded from the results that product properties can be affected remarkably by the content of chondroitin sulfate and the pH value of reactant, less remarkably by the reaction temperature and slightly by the reaction time.


2012 ◽  
Vol 581-582 ◽  
pp. 525-528
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
He Zhang Chen ◽  
Jian Long Wang ◽  
...  

The LiFe0.98Mn0.02PO4/C was synthesized by spray-drying and low temperature reduction route using FePO4•2H2O as precursor, which was prepared by a simple co-precipitation method. The LiFe0.98Mn0.02PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis and SEM images show that sample has the good ordered structure and spherical particle. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 162.1 mAh•g−1 and 155.8 mAh•g−1 at current density of 0.1 C and 1C, respectively. The capacity retention reaches 99.4% after 100 cycles at 1C.


Sign in / Sign up

Export Citation Format

Share Document