scholarly journals Inhibitory effects of antifungal drugs on biofilm producing Aspergillus spp. recovered from drinking water system

2020 ◽  
Author(s):  
Noorulain Nazir ◽  
Abubakar Siddique ◽  
Nisar A Khan

Abstract Aims: Biofilms formed in drinking water distribution systems serve as a continuous source of fungal infections. Biofilms are thick aggregates of adherent microorganisms including pathogenic species of fungi. Respiratory diseases and skin allergy reactions are caused by drinking water containing biofilm forming fungus and bacteria. One of the main causes of nosocomial infections and respiratory diseases in hospitals is due to the fungal biofilm formation in machines, catheters and other surgical instruments. There are some antifungal drugs which are used to control biofilm formation to minimize the infection rate. Methodology and results: The present study was conducted to isolate and identify Aspergillus species which are the main fungal spp. responsible for the biofilm formation in drinking water and to check their antifungal susceptibility against antifungal drugs. The isolated fungal samples from drinking water were cultivated on Potato dextrose agar for the isolation of Aspergillus species. Isolated Aspergillus species were identified on the basis of cultural, morphological and microscopic examination. Then in-vitro ability of biofilm produced by isolated Aspergillus species was estimated using microtitre plate method and quantification by crystal violet assay. Antifungal susceptibility testing against isolated fungal spp. was done by antifungal drug Amphotericin B.Results: From results, it is concluded that drinking water of labs, hospitals and common water chillers were more prevelant by Aspergillus species whereas water from reverse osmosis plants showed negative results. From microtitre plate method and crystal violet assay, it was concluded that Aspergillus spp. are Susceptible against Amphotericin B drug as compared to miconazole.

Author(s):  
Nazir NUA ◽  
◽  
Siddique A ◽  
Khan MN ◽  
Ishaque M ◽  
...  

Aims: Biofilms formed in drinking water distribution systems serve as a continuous source of fungal infections. Biofilms are thick aggregates of adherent microorganisms including pathogenic species of fungi. Respiratory diseases and skin allergy reactions are caused by drinking water containing biofilm forming fungus and bacteria. One of the main causes of nosocomial infections and respiratory diseases in hospitals is due to the fungal biofilm formation in machines, catheters and other surgical instruments. There are some antifungal drugs which are used to control biofilm formation to minimize the infection rate. Methodology and results: The present study was conducted to isolate and identify Aspergillus species which are the main fungal spp. responsible for the biofilm formation in drinking water and to check their antifungal susceptibility against antifungal drugs. The isolated fungal samples from drinking water were cultivated on Potato dextrose agar for the isolation of Aspergillus species. Isolated Aspergillus species were identified on the basis of cultural, morphological and microscopic examination. Then in-vitro ability of biofilm produced by isolated Aspergillus species was estimated using microtitre plate method and quantification by crystal violet assay. Antifungal susceptibility testing against isolated fungal spp. was done by antifungal drug Amphotericin B. Results: From results, it is concluded that drinking water of labs, hospitals and common water chillers were more prevelant by Aspergillus species whereas water from reverse osmosis plants showed negative results. From microtitre plate method and crystal violet assay, it was concluded that Aspergillus spp. are Susceptible against Amphotericin B drug as compared to miconazole. Keywords: Aspergillus spp; Biofilm; Drinking water; Disk diffusion method; Amphotericin B


2020 ◽  
Vol 69 (6) ◽  
pp. 830-837
Author(s):  
Raimunda Sâmia Nogueira Brilhante ◽  
José Alexandre Telmos Silva ◽  
Géssica dos Santos Araújo ◽  
Vandbergue Santos Pereira ◽  
Wilker Jose Perez Gotay ◽  
...  

Introduction. Cryptococcus species are pathogens commonly associated with cases of meningoencephalitis in individuals who are immunosuppressed due to AIDS. Aim. The aim was to evaluate the effects of the antiretroviral darunavir alone or associated with fluconazole, 5-flucytosine and amphotericin B against planktonic cells and biofilms of Cryptococcus species. Methodology. Susceptibility testing of darunavir and the common antifungals against 12 members of the Cryptococcus neoformans/Cryptococcus gattii species complex was evaluated by broth microdilution. The interaction between darunavir and antifungals against planktonic cells was tested by a checkerboard assay. The effects of darunavir against biofilm metabolic activity and biomass were evaluated by the XTT reduction assay and crystal violet staining, respectively. Results. Darunavir combined with amphotericin B showed a synergistic interaction against planktonic cells. No antagonistic interaction was observed between darunavir and the antifungals used. All Cryptococcus species strains were strong biofilm producers. Darunavir alone reduced biofilm metabolic activity and biomass when added during and after biofilm formation (P<0.05). The combination of darunavir with antifungals caused a significant reduction in biofilm metabolic activity and biomass when compared to darunavir alone (P<0.05). Conclusion. Darunavir presents antifungal activity against planktonic cells of Cryptococcus species and synergism with amphotericin B. In addition, darunavir led to reduced biofilm formation and showed activity against mature biofilms of Cryptococcus species. Activity of the antifungals against mature biofilms was enhanced in the presence of darunavir.


Author(s):  
Lisa Kirchhoff ◽  
Silke Dittmer ◽  
Ann-Kathrin Weisner ◽  
Jan Buer ◽  
Peter-Michael Rath ◽  
...  

Abstract Objectives Patients with immunodeficiency or cystic fibrosis frequently suffer from respiratory fungal infections. In particular, biofilm-associated fungi cause refractory infection manifestations, linked to increased resistance to anti-infective agents. One emerging filamentous fungus is Lomentospora prolificans. Here, the biofilm-formation capabilities of L. prolificans isolates were investigated and the susceptibility of biofilms to various antifungal agents was analysed. Methods Biofilm formation of L. prolificans (n = 11) was estimated by crystal violet stain and antibiofilm activity was additionally determined via detection of metabolically active biofilm using an XTT assay. Amphotericin B, micafungin, voriconazole and olorofim were compared with regard to their antibiofilm effects when added prior to adhesion, after adhesion and on mature and preformed fungal biofilms. Imaging via confocal laser scanning microscopy was carried out to demonstrate the effect of drug treatment on the fungal biofilm. Results Antibiofilm activities of the tested antifungal agents were shown to be most effective on adherent cells whilst mature biofilm was the most resistant. The most promising antibiofilm effects were detected with voriconazole and olorofim. Olorofim showed an average minimum biofilm eradication concentration (MBEC) of 0.06 mg/L, when added prior to and after adhesion. The MBECs of voriconazole were ≤4 mg/L. On mature biofilm the MBECs of olorofim and voriconazole were higher than the previously determined MICs against planktonic cultures. In contrast, amphotericin B and especially micafungin did not exhibit sufficient antibiofilm activity against L. prolificans. Conclusions To our knowledge, this is the first study demonstrating the antibiofilm potential of olorofim against the human pathogenic fungus L. prolificans.


2009 ◽  
Vol 8 (2) ◽  
pp. 279-289 ◽  
Author(s):  
Luciana R. Brandão ◽  
Adriana O Medeiros ◽  
Mariana C. Duarte ◽  
Anne C. Barbosa ◽  
Carlos A. Rosa

The diversity and antifungal resistance of yeasts able to grow at 37°C and the occurrence of bacterial indicators of water quality were studied in three lakes in Southeastern Brazil. The densities of yeasts, Escherichia coli, Enterococcus spp. and Pseudomonasaeruginosa were determined by the multiple-tube fermentation technique, and counts of heterotrophic bacteria were determined using the pour plate method. The yeasts were identified using physiological and molecular techniques and their resistance to amphotericin B, itraconazole and fluconazole was tested. Yeast occurrence was significantly correlated only with the density of fecal coliforms. Candida krusei, C. guilliermondii and C. tropicalis, the most frequently isolated yeast species, are associated with fecal contamination of water by warm-blooded animals. Yeast isolates were most resistant to amphotericin B (21.7%), followed by itraconazole (20%) and then fluconazole (2.8%). In addition to tests for the fecal coliform group, the density of yeasts grown at 37°C could be used as a complementary microbial indicator that aquatic environments contain organic matter of human origin. The incidence of yeast species resistant to three antifungal drugs shows that these microorganisms could pose a health risk to the people who use these lakes for recreation.


2020 ◽  
Author(s):  
Matthew B. Lohse ◽  
Megha Gulati ◽  
Charles S. Craik ◽  
Alexander D. Johnson ◽  
Clarissa J. Nobile

AbstractBiofilms formed by the fungal pathogen Candida albicans are resistant to many of the antifungal agents commonly used in the clinic. Previous reports suggest that protease inhibitors, specifically inhibitors of aspartyl proteases, could be effective antibiofilm agents. We screened three protease inhibitor libraries, containing a total of 80 compounds for the abilities to prevent C. albicans biofilm formation and to disrupt mature biofilms. The compounds were screened individually and in the presence of subinhibitory concentrations of the most commonly prescribed antifungal agents for Candida infections: fluconazole, amphotericin B, or caspofungin. Although few of the compounds affected biofilms on their own, seven aspartyl protease inhibitors inhibited biofilm formation when combined with amphotericin B or caspofungin. Furthermore, nine aspartyl protease inhibitors disrupted mature biofilms when combined with caspofungin. These results suggest that the combination of standard antifungal agents together with specific protease inhibitors may be useful in the prevention and treatment of C. albicans biofilm infections.ImportanceCandida albicans is one of the most common pathogens of humans. C. albicans forms biofilms, structured communities of cells several hundred microns thick, on both biotic and abiotic surfaces. These biofilms are typically resistant to antifungal drugs at the concentrations that are normally effective against free-floating cells, thus requiring treatment with higher drug concentrations that often have significant side effects. Here, we show that certain combinations of existing antifungal agents with protease inhibitors, including several drugs already commonly used to treat HIV patients, are effective at inhibiting biofilm formation by C. albicans and/or at disrupting mature C. albicans biofilms.


2017 ◽  
Author(s):  
Sudhir K. Shukla ◽  
T. Subba Rao

AbstractMicroplates are essential tools for biofilm research since it allows high throughput screening of biofilm forming strains or in the assay of anti-biofilm drugs. However, 96 well microtitre plate based assays share the issue of “edge effect”. The primary cause of the “edge effect” phenomenon is evaporation. As edge effect causes a significant increase in plate rejection rate by introducing experimental error, we improvised the classical crystal violet assay to reduce water loss from the peripheral wells. The improvised method showed a significant reduction in edge effect and minimised error in crystal violet assay


2020 ◽  
Author(s):  
Yue Qu ◽  
Shoufeng Yang ◽  
Zhangzhang Chen ◽  
Feifei Su

Abstract Background: The ability of the human fungal pathogen Candida albicans to form biofilms, for example on indwelling medical devices, is a major pathogenic mechanism and has been the focus of intense studies in the fungal pathogenesis field. A key research tool used is the quantitative methods for measuring biofilm formation of C. albicans. Objective: We sought to optimize the conventional crystal violet (CV) staining assay for quantification of biofilm formation by C. albicans and evaluate its performance. Methods: Individual modifications included (i) submerge-washing of microplates to remove non-adherent cells, (ii) heat-fixation, (iii) short-term staining for 3 min, (iv) submerge-washing to remove unbound CV dye, and (v) short-term destaining for 15 min were compared with the standard procedure, and those were superior were incorporated. Performance analysis was carried out for the modified CV assay, in comparison to the conventional CV assay and the XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide] reduction assay. Results: The modified CV assay demonstrated several advantages in quantitative assessment of biofilm formation of C. albicans over the conventional CV assay, including greater accuracy and reproducibility, shorter experimental time and reduced labor intensity, and was at least comparable to the XTT reduction assay.Conclusion: The modified CV method can be used as an alternative to the XTT reduction assay in quantification of biofilm growth by C. albicans.


2006 ◽  
Vol 50 (3) ◽  
pp. 1021-1033 ◽  
Author(s):  
Luis R. Martinez ◽  
Arturo Casadevall

ABSTRACT Microbial biofilms contribute to virulence and resistance to antibiotics by shielding microbial cells from host defenses and antimicrobial drugs, respectively. Cryptococcus neoformans was demonstrated to form biofilms in polystyrene microtiter plates. The numbers of CFU of disaggregated biofilms, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide reduction, and light and confocal microscopy were used to measure the fungal mass, the metabolic activity, and the appearance of C. neoformans biofilms, respectively. Biofilm development by C. neoformans followed a standard sequence of events: fungal surface attachment, microcolony formation, and matrix production. The susceptibilities of C. neoformans cells of the biofilm and planktonic phenotypes to four antifungal agents were examined. The exposure of C. neoformans cells or preformed cryptococcal biofilms to fluconazole or voriconazole did not result in yeast growth inhibition and did not affect the metabolic activities of the biofilms, respectively. In contrast, both C. neoformans cells and preformed biofilms were susceptible to amphotericin B and caspofungin. However, C. neoformans biofilms were significantly more resistant to amphotericin B and caspofungin than planktonic cells, and their susceptibilities to these drugs were further reduced if cryptococcal cells contained melanin. A spot enzyme-linked immunosorbent assay and light and confocal microscopy were used to investigate how antifungal drugs affected C. neoformans biofilm formation. The mechanism by which amphotericin B and caspofungin interfered with C. neoformans biofilm formation involved capsular polysaccharide release and adherence. Our results suggest that biofilm formation may diminish the efficacies of some antifungal drugs during cryptococcal infection.


2019 ◽  
Vol 57 (7) ◽  
pp. 864-873 ◽  
Author(s):  
Marília Martins Nishikawa ◽  
Rodrigo Almeida-Paes ◽  
Fabio Brito-Santos ◽  
Carlos Roberto Nascimento ◽  
Miguel Madi Fialho ◽  
...  

AbstractEarly diagnosis, efficient clinical support, and proper antifungal therapy are essential to reduce death and sequels caused by cryptococcosis. The emergence of resistance to the antifungal drugs commonly used for cryptococcosis treatment is an important issue of concern. Thus, the in vitro antifungal susceptibility of clinical strains from northern Brazil, including C. neoformans VNI (n = 62) and C. gattii VGII (n = 37), to amphotericin B (AMB), 5-flucytosine, fluconazole, voriconazole, and itraconazole was evaluated using the Etest and Vitek 2 systems and the standardized broth microdilution (CLSI-BMD) methodology. According to the CLSI-BMD, the most active in vitro azole was voriconazole (C. neoformans VNI modal MIC of 0.06 μg/ml and C. gattii VGII modal MIC of 0.25 μg/ml), and fluconazole was the least active (modal MIC of 4 μg/ml for both fungi). Modal MICs for amphotericin B were 1 μg/ml for both fungi. In general, good essential agreement (EA) values were observed between the methods. However, AMB presented the lowest EA between CLSI-BMD and Etest for C. neoformans VNI and C. gattii VGII (1.6% and 2.56%, respectively, P < .05 for both). Considering the proposed Cryptococcus spp. epidemiological cutoff values, more than 97% of the studied isolates were categorized as wild-type for the azoles. However, the high frequency of C. neoformans VNI isolates in the population described here that displayed non-wild-type susceptibility to AMB is noteworthy. Epidemiological surveillance of the antifungal resistance of cryptococcal strains is relevant due to the potential burden and the high lethality of cryptococcal meningitis in the Amazon region.


Sign in / Sign up

Export Citation Format

Share Document