scholarly journals Plasmids facilitate pathogenicity, not cooperation, in bacteria

Author(s):  
Anna Dewar ◽  
Joshua Thomas ◽  
Thomas Scott ◽  
Geoff Wild ◽  
Ashleigh Griffin ◽  
...  

Abstract Horizontal gene transfer via plasmids could favour cooperation in bacteria, because transfer of a cooperative gene turns non-cooperative cheats into cooperators. This hypothesis has received support from both theoretical and genomic analyses. In contrast, with a comparative analysis across 51 diverse species, we found that genes for extracellular proteins, which are likely to act as cooperative ‘public goods’, were not more likely to be carried on either: (i) plasmids compared to chromosomes; or (ii) plasmids that transfer at higher rates. Our results were supported by theoretical modelling which showed that while horizontal gene transfer can help cooperative genes initially invade a population, it does not favour the longer-term maintenance of cooperation. Instead, we found that genes for extracellular proteins were more likely to be on plasmids when they coded for pathogenic virulence traits, in pathogenic bacteria with a broad host-range. Taken together, these results support an alternate hypothesis, that plasmid gene location confers benefits other than horizontal gene transfer.

Science ◽  
2008 ◽  
Vol 322 (5909) ◽  
pp. 1843-1845 ◽  
Author(s):  
Luciano A. Marraffini ◽  
Erik J. Sontheimer

Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate ofStaphylococcus epidermidisharbors a CRISPR spacer that matches thenickasegene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation inS. epidermidis. Insertion of a self-splicing intron intonickaseblocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.


2003 ◽  
Vol 16 (7) ◽  
pp. 617-625 ◽  
Author(s):  
Hari B. Krishnan ◽  
Julio Lorio ◽  
Won Seok Kim ◽  
Guoqiao Jiang ◽  
Kil Yong Kim ◽  
...  

Several gram-negative plant and animal pathogenic bacteria have evolved a type III secretion system (TTSS) to deliver effector proteins directly into the host cell cytosol. Sinorhizobium fredii USDA257, a symbiont of soybean and many other legumes, secretes proteins called Nops (nodulation outer proteins) into the extracellular environment upon flavonoid induction. Mutation analysis and the nucleotide sequence of a 31.2-kb symbiosis (sym) plasmid DNA region of USDA257 revealed the existence of a TTSS locus in this symbiotic bacterium. This locus includes rhc (rhizobia conserved) genes that encode components of a TTSS and proteins that are secreted into the environment (Nops). The genomic organization of the TTSS locus of USDA257 is remarkably similar to that of another broad-host range symbiont, Rhizobium sp. strain NGR234. Flavonoids that activate the transcription of the nod genes of USDA257 also stimulate the production of novel filamentous appendages known as pili. Electron microscope examination of isolated pili reveals needle-like filaments of 6 to 8 nm in diameter. The production of the pili is dependent on a functional nodD1 and the presence of a nod gene-inducing compound. Mutations in several of the TTSS genes negate the ability of USDA257 to elaborate pili. Western blot analysis using antibodies raised against purified NopX, Nop38, and Nop7 reveals that these proteins were associated with the pili. Mutations in rhcN, rhcJ, rhcC, and ttsI alter the ability of USDA257 to form nodules on Glycine max and Macroptilium atropurpureum.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Shivakumara Siddaramappa ◽  
Jean F Challacombe ◽  
Alison J Duncan ◽  
Allison F Gillaspy ◽  
Matthew Carson ◽  
...  

2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Sarah Ganter ◽  
Guylaine Miotello ◽  
Lucía Manso-Silván ◽  
Jean Armengaud ◽  
Florence Tardy ◽  
...  

ABSTRACT Many mycoplasma species are isolated from the ruminant lungs as either saprophytes or true pathogens. These wall-less bacteria possess a minimal genome and reduced metabolic capabilities. Accordingly, they rely heavily on their hosts for the supply of essential metabolites and, notably, peptides. Seven of 13 ruminant lung-associated Mycoplasma (sub)species were shown to possess caseinolytic activity when grown in rich media and assessed with a quantitative fluorescence test. For some species, this activity was detected in spent medium, an indication that proteases were secreted outside the mycoplasma cells. To identify these proteases, we incubated concentrated washed cell pellets in a defined medium and analyzed the supernatants by tandem mass spectrometry. Secreted-protease activity was detected mostly in the species belonging to the Mycoplasma mycoides cluster (MMC) and, to a lesser extent, in Mycoplasma bovirhinis. Analyzing a Mycoplasma mycoides subsp. capri strain, chosen as a model, we identified 35 expressed proteases among 55 predicted coding genes, of which 5 were preferentially found in the supernatant. Serine protease S41, acquired by horizontal gene transfer, was responsible for the caseinolytic activity, as demonstrated by zymography and mutant analysis. In an M. capricolum mutant, inactivation of the S41 protease resulted in marked modification of the expression or secretion of 17 predicted surface-exposed proteins. This is an indication that the S41 protease could have a role in posttranslational cleavage of surface-exposed proteins and ectodomain shedding, whose physiological impacts still need to be explored. IMPORTANCE Few studies pertaining to proteases in ruminant mycoplasmas have been reported. Here, we focus on proteases that are secreted outside the mycoplasma cell using a mass spectrometry approach. The most striking result is the identification, within the Mycoplasma mycoides cluster, of a serine protease that is exclusively detected outside the mycoplasma cells and is responsible for casein digestion. This protease may also be involved in the posttranslational processing of surface proteins, as suggested by analysis of mutants showing a marked reduction in the secretion of extracellular proteins. By analogy, this finding may help increase understanding of the mechanisms underlying this ectodomain shedding in other mycoplasma species. The gene encoding this protease is likely to have been acquired via horizontal gene transfer from Gram-positive bacteria and sortase-associated surface proteases. Whether this protease and the associated ectodomain shedding are related to virulence has yet to be ascertained.


2014 ◽  
Vol 80 (20) ◽  
pp. 6446-6457 ◽  
Author(s):  
Miguel A. Matilla ◽  
George P. C. Salmond

ABSTRACTMembers of the enterobacterial genusSerratiaare ecologically widespread, and some strains are opportunistic human pathogens. Bacteriophage ϕMAM1 was isolated onSerratia plymuthicaA153, a biocontrol rhizosphere strain that produces the potently bioactive antifungal and anticancer haterumalide oocydin A. The ϕMAM1 phage is a generalized transducing phage that infects multiple environmental and clinical isolates ofSerratiaspp. and a rhizosphere strain ofKluyvera cryocrescens. Electron microscopy allowed classification of ϕMAM1 in the familyMyoviridae. Bacteriophage ϕMAM1 is virulent, uses capsular polysaccharides as a receptor, and can transduce chromosomal markers at frequencies of up to 7 × 10−6transductants per PFU. We also demonstrated transduction of the complete 77-kb oocydin A gene cluster and heterogeneric transduction of a plasmid carrying a type III toxin-antitoxin system. These results support the notion of the potential ecological importance of transducing phages in the acquisition of genes by horizontal gene transfer. Phylogenetic analyses grouped ϕMAM1 within the ViI-like bacteriophages, and genomic analyses revealed that the major differences between ϕMAM1 and other ViI-like phages arise in a region encoding the host recognition determinants. Our results predict that the wider genus of ViI-like phages could be efficient transducing phages, and this possibility has obvious implications for the ecology of horizontal gene transfer, bacterial functional genomics, and synthetic biology.


Cell ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 795-798 ◽  
Author(s):  
Stephanie F Mel ◽  
John J Mekalanos

2019 ◽  
Author(s):  
Başak Öztürk ◽  
Johannes Werner ◽  
Jan P. Meier-Kolthoff ◽  
Boyke Bunk ◽  
Cathrin Spröer ◽  
...  

AbstractBiodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full genome sequences of six linuron degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight in the mechanisms of genetic adaptation towards linuron metabolism in Variovorax. Whole genome sequence analysis confirmed the phylogenetic position of the linuron degraders in a separate clade within Variovorax and indicated their unlikely origin from a common ancestral linuron degrader. The linuron degraders differentiated from non-degraders by the presence of multiple plasmids of 20 to 839 kb, including plasmids of unknown plasmid groups. The linuron catabolic gene clusters showed (i) high conservation and synteny and (ii) strain-dependent distribution among the different plasmids. All were bordered by IS1071 elements forming composite transposon structures appointing IS1071 as key for catabolic gene recruitment. Most of the strain carried at least one broad host range plasmid that might have been a second instrument for catabolic gene acquisition. We conclude that clade 1Variovorax strains, despite their different geographical origin, made use of a limited genetic repertoire to acquire linuron biodegradation.ImportanceThe genus Variovorax and especially a clade of strains that phylogenetically separates from the majority of Variovorax species, appears to be a specialist in the biodegradation of the phenyl urea herbicide linuron. Horizontal gene transfer (HGT) likely played an essential role in the genetic adaptation of those strain to acquire the linuron catabolic genotype. However, we do not know the genetic repertoire involved in this adaptation both regarding catabolic gene functions as well as gene functions that promote HGT neither do we know how this varies between the different strains. These questions are addressed in this paper by analyzing the full genome sequences of six linuron degrading Variovorax strains. This knowledge is important for understanding the mechanisms that steer world-wide genetic adaptation in a particular species and this for a particular phenotypic trait as linuron biodegradation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eivind A. B. Undheim ◽  
Ronald A. Jenner

AbstractVenoms have evolved over a hundred times in animals. Venom toxins are thought to evolve mostly by recruitment of endogenous proteins with physiological functions. Here we report phylogenetic analyses of venom proteome-annotated venom gland transcriptome data, assisted by genomic analyses, to show that centipede venoms have recruited at least five gene families from bacterial and fungal donors, involving at least eight horizontal gene transfer events. These results establish centipedes as currently the only known animals with venoms used in predation and defence that contain multiple gene families derived from horizontal gene transfer. The results also provide the first evidence for the implication of horizontal gene transfer in the evolutionary origin of venom in an animal lineage. Three of the bacterial gene families encode virulence factors, suggesting that horizontal gene transfer can provide a fast track channel for the evolution of novelty by the exaptation of bacterial weapons into animal venoms.


2018 ◽  

AbstractShared traits between prokaryotes and eukaryotes are helpful in the understanding of the tree of life evolution. In bacteria and eukaryotes, it has been shown a particular organization of tRNA genes as clusters, but this trait has not been explored in archaea domain. Here, based on analyses of complete and draft archaeal genomes, we demonstrated the prevalence of tRNA gene clusters in archaea. tRNA gene cluster was identified at least in three Archaea class, Halobacteria, Methanobacteria and Methanomicrobia from Euryarchaeota supergroup. Genomic analyses also revealed evidence of tRNA gene cluster associated with mobile genetic elements and horizontal gene transfer inter/intra-domain. The presence of tRNA gene clusters in the three domain of life suggests a role of this type of tRNA gene organization in the biology of the living organisms.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1707-1712 ◽  
Author(s):  
Elzbieta Krzywinska ◽  
Jaroslaw Krzywinski ◽  
Jeffrey S. Schorey

Acquisition of genetic information through horizontal gene transfer (HGT) is an important evolutionary process by which micro-organisms gain novel phenotypic characteristics. In pathogenic bacteria, for example, it facilitates maintenance and enhancement of virulence and spread of drug resistance. In the genus Mycobacterium, to which several primary human pathogens belong, HGT has not been clearly demonstrated. The few existing reports suggesting this process are based on circumstantial evidence of similarity of sequences found in distantly related species. Here, direct evidence of HGT between strains of Mycobacterium avium representing two different serotypes is presented. Conflicting evolutionary histories of genes encoding elements of the glycopeptidolipid (GPL) biosynthesis pathway led to an analysis of the GPL cluster genomic sequences from four Mycobacterium avium strains. The sequence of M. avium strain 2151 appeared to be a mosaic consisting of three regions having alternating identities to either M. avium strains 724 or 104. Maximum-likelihood estimation of two breakpoints allowed a ∼4100 bp region horizontally transferred into the strain 2151 genome to be pinpointed with confidence. The maintenance of sequence continuity at both breakpoints and the lack of insertional elements at these sites strongly suggest that the integration of foreign DNA occurred by homologous recombination. To our knowledge, this is the first report to demonstrate naturally occurring homologous recombination in Mycobacterium. This previously undiscovered mechanism of genetic exchange may have major implications for the understanding of Mycobacterium pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document