scholarly journals TaClpS1, Negatively Regulates Wheat Resistance Against Puccinia Striiformis f. sp. Tritici

2020 ◽  
Author(s):  
Qian Yang ◽  
Kunyan Cai ◽  
Shuxin Tian ◽  
Yan Liu ◽  
Zhensheng Kang ◽  
...  

Abstract Background The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and ubiquitin ligases (E3) function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. Results Here, we identified and characterized wheat ClpS1 (TaClpS1). TaClpS1 encoded 161 amino acids, contained a conserved ClpS domain and a chloroplast transit peptide (1–32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knock-down of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the growth of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. Conclusions These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.


2020 ◽  
Author(s):  
Qian Yang ◽  
Md Ashraful Islam ◽  
Kunyan Cai ◽  
Shuxin Tian ◽  
Yan Liu ◽  
...  

Abstract Background: The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and E3 ubiquitin ligase function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 ubiquitin ligase in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. Results: Here, we identified and characterized wheat (Triticum aestivum) ClpS1 (TaClpS1). TaClpS1 encoded 161 amino acids, contained a conserved ClpS domain and a chloroplast transit peptide (1-32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knock-down of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the growth of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. Conclusions: These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.



2020 ◽  
Author(s):  
Qian Yang ◽  
Md Ashraful Islam ◽  
Kunyan Cai ◽  
Shuxin Tian ◽  
Yan Liu ◽  
...  

Abstract Background: The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and E3 ubiquitin ligase function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 ubiquitin ligase in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. Results: Here, wheat (Triticum aestivum) ClpS1 (TaClpS1) was studied and resulted to encode 161 amino acids, containing a conserved ClpS domain and a chloroplast transit peptide (1-32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in wheat resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the number of haustoria, length of infection hypha and infection area of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. Conclusions: These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.



2020 ◽  
Author(s):  
Qian Yang ◽  
Md Ashraful Islam ◽  
Kunyan Cai ◽  
Shuxin Tian ◽  
Yan Liu ◽  
...  

Abstract Background: The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and E3 ubiquitin ligase function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 ubiquitin ligase in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. Results: Here, wheat (Triticum aestivum) ClpS1 (TaClpS1) was studied and resulted to encode 161 amino acids, containing a conserved ClpS domain and a chloroplast transit peptide (1-32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in wheat resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the number of haustoria, length of infection hypha and infection area of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. Conclusions: These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.



2020 ◽  
Author(s):  
Qian Yang ◽  
Md Ashraful Islam ◽  
Kunyan Cai ◽  
Shuxin Tian ◽  
Yan Liu ◽  
...  

Abstract Background: The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and E3 ubiquitin ligase function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 ubiquitin ligase in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. Results: Here, wheat (Triticum aestivum) ClpS1 (TaClpS1) was studied and resulted to encode 161 amino acids, containing a conserved ClpS domain and a chloroplast transit peptide (1-32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in wheat resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the number of haustoria, length of infection hypha and infection area of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. Conclusions: These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.



2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qian Yang ◽  
Md Ashraful Islam ◽  
Kunyan Cai ◽  
Shuxin Tian ◽  
Yan Liu ◽  
...  

Abstract Background The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and E3 ubiquitin ligase function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 ubiquitin ligase in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. Results Here, wheat (Triticum aestivum) ClpS1 (TaClpS1) was studied and resulted to encode 161 amino acids, containing a conserved ClpS domain and a chloroplast transit peptide (1–32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in wheat resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the number of haustoria, length of infection hypha and infection area of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. Conclusions These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.



2016 ◽  
Vol 113 (12) ◽  
pp. 3383-3388 ◽  
Author(s):  
Armin Springer ◽  
ChulHee Kang ◽  
Sachin Rustgi ◽  
Diter von Wettstein ◽  
Christiane Reinbothe ◽  
...  

Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.



2012 ◽  
Vol 25 (6) ◽  
pp. 755-764 ◽  
Author(s):  
Xiaodong Wang ◽  
Xiaojie Wang ◽  
Hao Feng ◽  
Chunlei Tang ◽  
Pengfei Bai ◽  
...  

Programmed cell death (PCD) is a physiological process to remove redundant or harmful cells, for the development of multicellular organisms, or for restricting the spread of pathogens (hypersensitive response). Metacaspases are cysteine-dependent proteases which play an essential role in PCD. Triticum aestivum metacaspase 4 (TaMCA4) is a type II metacaspase gene cloned from ‘Suwon11’ wheat, with typical structural features such as peptidase C14 caspase domain and a long linker sequence between the two subunits. Transient expression of TaMCA4 in tobacco leaves failed to induce PCD directly but enhanced cell death triggered by a mouse Bax gene or a candidate effector gene from Puccinia striiformis f. sp. tritici. Enhancement of PCD was also observed in wheat leaves co-bombarded with TaMCA4. When challenged with the avirulent race of P. striiformis f. sp. tritici, the expression level of TaMCA4 in wheat leaves was sharply upregulated, whereas the transcript level was not significantly induced by the virulent race. Moreover, knocking down TaMCA4 expression by virus-induced gene silencing enhanced the susceptibility of Suwon11 to the avirulent race of P. striiformis f. sp. tritici and reduced the necrotic area at infection sites.



2019 ◽  
Vol 109 (7) ◽  
pp. 1257-1269
Author(s):  
You-Ping Xu ◽  
Yuan Zhao ◽  
Xiao-Yi Song ◽  
Yun-Feng Ye ◽  
Ren-Gang Wang ◽  
...  

Ubiquitin (Ub) extension proteins (UEPs) are fusion proteins of a Ub at the N terminus to a ribosomal protein. They are the main source of Ub and the only source of extension ribosomal protein. Although important roles of the Ub-26S proteasome system in various biological processes have been well established, direct evidence for the role of UEP genes in plant defense is rarely reported. In this study, we cloned a Ub-S27a-type UEP gene (NbUEP1) from Nicotiana benthamiana and demonstrated its function in cell death and disease resistance. Virus-induced gene silencing of NbUEP1 led to intensive cell death, culminating in whole-seedling withering. Transient RNA interference (RNAi) of NbUEP1 caused strong cell death in infiltrated areas, while stable NbUEP1-RNAi tobacco plants constitutively formed necrotic lesions in leaves. NbUEP1-RNAi plants exhibited increased resistance to the oomycete Pythium aphanidermatum and viruses Tobacco mosaic virus and Cucumber mosaic virus while displaying decreased resistance to the nematode Meloidogyne incognita compared with non-RNAi control plants. Transcription profiling analysis indicated that jasmonate and ethylene pathways, lipid metabolism, copper amine oxidase-mediated active species generation, glycine-rich proteins, vacuolar processing enzyme- and RD21-mediated cell death and defense regulation, and autophagy might be associated with NbUEP1-mediated cell death and resistance. Our results provided evidence for the important roles of plant UEPs in modulating plant cell death and disease resistance.



2014 ◽  
Vol 27 (2) ◽  
pp. 177-189 ◽  
Author(s):  
Mazen Alazem ◽  
Kuan-Yu Lin ◽  
Na-Sheng Lin

Accepted 29 October 2013. Abscisic acid (ABA) plays a key role in modulating plant responses to different biotic and abiotic stresses. However, the effect of ABA on virus infection is not fully understood. Here, we describe the effects of the ABA pathway on the accumulation of Bamboo mosaic virus (BaMV) and Cucumber mosaic virus (CMV) in two different hosts: Arabidopsis thaliana and Nicotiana benthamiana. We report that ABA2 plays a critical role in the accumulation of BaMV and CMV. Mutants downstream of ABA2 (aao3, abi1-1, abi3-1, and abi4-1) were susceptible to BaMV, indicating that the ABA pathway downstream of ABA2 is essential for BaMV resistance. The aba2-1 mutant decreased the accumulation of BaMV (+)RNA, (–)RNA, and coat protein, with the most dramatic effect being observed for (–)RNA. These findings were further validated by the use of virus-induced gene silencing and enzyme-linked immunosorbent assay in N. benthamiana. In addition, infecting N. benthamiana with BaMV or CMV increased ABA contents and activated the SA and ABA pathways, thereby disrupting the antagonism between these two cascades. Our findings uncover a novel role for ABA2 in supporting BaMV and CMV accumulation, distinct from the opposing role of its downstream genes.



2020 ◽  
pp. PHYTO-05-20-017
Author(s):  
Yuheng Yang ◽  
Fengfeng Zhang ◽  
Tianyu Zhou ◽  
Anfei Fang ◽  
Yang Yu ◽  
...  

Plant subtilases (SBTs) or subtilisin-like proteases comprise a very diverse family of serine peptidases that participates in a broad spectrum of biological functions. Despite increasing evidence for roles of SBTs in plant immunity in recent years, little is known about wheat (Triticum aestivum) SBTs (TaSBTs). Here, we identified 255 TaSBT genes from bread wheat using the latest version 2.0 of the reference genome sequence. The SBT family can be grouped into five clades, from TaSBT1 to TaSBT5, based on a phylogenetic tree constructed with deduced protein sequences. In silico protein-domain analysis revealed the existence of considerable sequence diversification of the TaSBT family which, together with the local clustered gene distribution, suggests that TaSBT genes have undergone extensive functional diversification. Among those TaSBT genes whose expression was altered by biotic factors, TaSBT1.7 was found to be induced in wheat leaves by chitin and flg22 elicitors, as well as six examined pathogens, implying a role for TaSBT1.7 in plant defense. Transient overexpression of TaSBT1.7 in Nicotiana benthamiana leaves resulted in necrotic cell death. Moreover, knocking down TaSBT1.7 in wheat using barley stripe mosaic virus-induced gene silencing compromised the hypersensitive response and resistance against Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. Taken together, this study defined the full complement of wheat SBT genes and provided evidence for a positive role of one particular member, TaSBT1.7, in the incompatible interaction between wheat and a stripe rust pathogen.



Sign in / Sign up

Export Citation Format

Share Document