scholarly journals The Abscisic Acid Pathway Has Multifaceted Effects on the Accumulation of Bamboo mosaic virus

2014 ◽  
Vol 27 (2) ◽  
pp. 177-189 ◽  
Author(s):  
Mazen Alazem ◽  
Kuan-Yu Lin ◽  
Na-Sheng Lin

Accepted 29 October 2013. Abscisic acid (ABA) plays a key role in modulating plant responses to different biotic and abiotic stresses. However, the effect of ABA on virus infection is not fully understood. Here, we describe the effects of the ABA pathway on the accumulation of Bamboo mosaic virus (BaMV) and Cucumber mosaic virus (CMV) in two different hosts: Arabidopsis thaliana and Nicotiana benthamiana. We report that ABA2 plays a critical role in the accumulation of BaMV and CMV. Mutants downstream of ABA2 (aao3, abi1-1, abi3-1, and abi4-1) were susceptible to BaMV, indicating that the ABA pathway downstream of ABA2 is essential for BaMV resistance. The aba2-1 mutant decreased the accumulation of BaMV (+)RNA, (–)RNA, and coat protein, with the most dramatic effect being observed for (–)RNA. These findings were further validated by the use of virus-induced gene silencing and enzyme-linked immunosorbent assay in N. benthamiana. In addition, infecting N. benthamiana with BaMV or CMV increased ABA contents and activated the SA and ABA pathways, thereby disrupting the antagonism between these two cascades. Our findings uncover a novel role for ABA2 in supporting BaMV and CMV accumulation, distinct from the opposing role of its downstream genes.

2017 ◽  
Vol 4 (1) ◽  
pp. 28 ◽  
Author(s):  
Yu WANG ◽  
Jie ZHOU ◽  
Jingquan YU

Author(s):  
Chuankai Zhao ◽  
Diwakar Shukla

Phytohormone abscisic acid (ABA) is essential for plant responses to biotic and abiotic stresses. Dimeric receptors are a class of ABA receptors that are important for various ABA responses. While...


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1886
Author(s):  
Hui Jin Kim ◽  
Subhin Seomun ◽  
Youngdae Yoon ◽  
Geupil Jang

The phytohormone jasmonic acid (JA), a cyclopentane fatty acid, mediates plant responses to abiotic stresses. Abiotic stresses rapidly and dynamically affect JA metabolism and JA responses by upregulating the expression of genes involved in JA biosynthesis and signaling, indicating that JA has a crucial role in plant abiotic stress responses. The crucial role of JA has been demonstrated in many previous studies showing that JA response regulates various plant defense systems, such as removal of reactive oxygen species and accumulation of osmoprotectants. Furthermore, increasing evidence shows that plant tolerance to abiotic stresses is linked to the JA response, suggesting that abiotic stress tolerance can be improved by modulating JA responses. In this review, we briefly describe the JA biosynthetic and signaling pathways and summarize recent studies showing an essential role of JA in plant responses and tolerance to a variety of abiotic stresses, such as drought, cold, salt, and heavy metal stress. Additionally, we discuss JA crosstalk with another key stress hormone, abscisic acid, in plant abiotic stress responses.


2021 ◽  
pp. 5-30
Author(s):  
Lyudmila Vasilievna Chumikina ◽  
Lidiya Ivanovna Arabova ◽  
Valentina Vasil'yevna Kolpakova ◽  
Aleksey Fedorovich Topunov

Plants experience a variety of biotic and abiotic stresses that cause crop losses worldwide. Preventing crop losses due to these factors is of particular importance. For this, it is important to understand the mechanisms of both suppressing and stimulating seed germination and to develop technologies for controlling seed dormancy and development in order to avoid unwanted germination in the ears. Gene switching technologies can be used to address this and similar problems in seed development. Recent studies have shown that classical phytohormones - auxins, cytokinins, abscisic acid, ethylene, gibberellins - control all stages of plant ontogenesis. In addition to the classic phytohormones, there are relatively new ones - brassinosteroids, jasmonates, strigolactones, salicylates, which deserve consideration in a separate review. Together, these compounds are important metabolic engineering targets for the production of stress-resistant crops. In this review, we have summarized the role of phytohormones in plant development and resistance to abiotic stresses. Experimental data were presented on the transport of phytohormones, the interaction between them, as a result of which the activity of a certain hormone can be either enhanced or suppressed. We have identified the main links of phytohormones with an emphasis on the response of plants to abiotic stresses and have shown that the effect of an individual hormone depends on the ratio with other phytohormones and metabolites. Additional research along these lines will help explain different stress responses and provide tools to improve plant stress tolerance.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1089
Author(s):  
Huimin Ren ◽  
Xiaohong Zhao ◽  
Wenjie Li ◽  
Jamshaid Hussain ◽  
Guoning Qi ◽  
...  

Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.


2018 ◽  
Vol 25 (2) ◽  
pp. 253-267 ◽  
Author(s):  
Sandra Fonseca ◽  
Dhanya Radhakrishnan ◽  
Kalika Prasad ◽  
Andrea Chini

Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits.


Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 80 ◽  
Author(s):  
Zhang ◽  
Liu ◽  
Zhong ◽  
Zhang ◽  
Xu ◽  
...  

Positive-sense RNA viruses have a small genome with very limited coding capacity and are highly reliant on host factors to fulfill their infection. However, few host factors have been identified to participate in wheat yellow mosaic virus (WYMV) infection. Here, we demonstrate that wheat (Triticum aestivum) light-induced protein (TaLIP) interacts with the WYMV nuclear inclusion b protein (NIb). A bimolecular fluorescence complementation (BIFC) assay displayed that the subcellular distribution patterns of TaLIP were altered by NIb in Nicotiana benthamiana. Transcription of TaLIP was significantly decreased by WYMV infection and TaLIP-silencing wheat plants displayed more susceptibility to WYMV in comparison with the control plants, suggesting that knockdown of TaLIP impaired host resistance. Moreover, the transcription level of TaLIP was induced by exogenous abscisic acid (ABA) stimuli in wheat, while knockdown of TaLIP significantly repressed the expression of ABA-related genes such as wheat abscisic acid insensitive 5 (TaABI5), abscisic acid insensitive 8 (TaABI8), pyrabatin resistance 1-Llike (TaPYL1), and pyrabatin resistance 3-Llike (TaPYL3). Collectively, our results suggest that the interaction of NIb with TaLIP facilitated the virus infection possibly by disturbing the ABA signaling pathway in wheat.


Sign in / Sign up

Export Citation Format

Share Document