scholarly journals Forecasting lung cancer incidence, mortality, and prevalence to year 2030

Author(s):  
Erik Jakobsen ◽  
Karen Ege Olsen ◽  
Mette Bliddal ◽  
Malene Hornbak ◽  
Gitte S Persson ◽  
...  

Abstract Background Lung cancer incidence and prevalence is increasing worldwide and there is a focus on prevention, early detection, and development of new treatments which will impact the epidemiological patterns of lung cancer. The clinical characteristics and the trends in incidence, mortality, and prevalence of lung cancer in Denmark from 2006 through 2015 is described and a model for predicting the future epidemiological profile of lung cancer through 2030 is introduced.Methods The study population comprised all cases of lung cancer, registered in the Danish Cancer Registry, who were alive on January 1, 2006 or had a first-time ever diagnosis of lung cancer during 2006 through 2015. Information on morphology, stage of the disease, comorbidity and survival was obtained from other Danish health registers. Based on NORDCAN data and estimated patient mortality rates as well as prevalence proportions for the period 2006 through 2015, future case numbers of annual incidence, deaths, and resulting prevalence were projected.Results A total of 44.291 patients were included in the study. A shift towards more patients diagnosed with lower stages and with adenocarcinoma was observed. The incidence increased and the patient mortality rate decreased significantly, with a doubling of the prevalence during the observation period. We project that the numbers of prevalent cases of lung cancer in Denmark most likely will increase from about 10,000 at the end of 2015 to about 23,000 at the end of 2030.Conclusions Our findings support that lung cancer is being diagnosed at an earlier stage, that incidence will stop increasing, that mortality will decrease further, and that the prevalence will continue to increase substantially. Projections of cancer incidence, mortality, and prevalence are important for planning health services and should be updated at regular intervals.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erik Jakobsen ◽  
Karen Ege Olsen ◽  
Mette Bliddal ◽  
Malene Hornbak ◽  
Gitte F. Persson ◽  
...  

Abstract Background Lung cancer incidence and prevalence is increasing worldwide and there is a focus on prevention, early detection, and development of new treatments which will impact the epidemiological patterns of lung cancer. The clinical characteristics and the trends in incidence, mortality, and prevalence of lung cancer in Denmark from 2006 through 2015 are described and a model for predicting the future epidemiological profile of lung cancer through 2030 is introduced. Methods The study population comprised all cases of lung cancer, registered in the Danish Cancer Registry, who were alive on January 1, 2006 or had a first-time ever diagnosis of lung cancer during 2006 through 2015. Information on morphology, stage of the disease, comorbidity and survival was obtained from other Danish health registers. Based on NORDCAN data and estimated patient mortality rates as well as prevalence proportions for the period 2006 through 2015, future case numbers of annual incidence, deaths, and resulting prevalence were projected. Results A total of 44.291 patients were included in the study. A shift towards more patients diagnosed with lower stages and with adenocarcinoma was observed. The incidence increased and the patient mortality rate decreased significantly, with a doubling of the prevalence during the observation period. We project that the numbers of prevalent cases of lung cancer in Denmark most likely will increase from about 10,000 at the end of 2015 to about 23,000 at the end of 2030. Conclusions Our findings support that lung cancer is being diagnosed at an earlier stage, that incidence will stop increasing, that mortality will decrease further, and that the prevalence will continue to increase substantially. Projections of cancer incidence, mortality, and prevalence are important for planning health services and should be updated at regular intervals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zahra Khorrami ◽  
Mohsen Pourkhosravani ◽  
Maysam Rezapour ◽  
Koorosh Etemad ◽  
Seyed Mahmood Taghavi-Shahri ◽  
...  

AbstractLung cancer is the most rapidly increasing malignancy worldwide with an estimated 2.1 million cancer cases in the latest, 2018 World Health Organization (WHO) report. The objective of this study was to investigate the association of air pollution and lung cancer, in Tehran, Iran. Residential area information of the latest registered lung cancer cases that were diagnosed between 2014 and 2016 (N = 1,850) were inquired from the population-based cancer registry of Tehran. Long-term average exposure to PM10, SO2, NO, NO2, NOX, benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene (BTEX), and BTEX in 22 districts of Tehran were estimated using land use regression models. Latent profile analysis (LPA) was used to generate multi-pollutant exposure profiles. Negative binomial regression analysis was used to examine the association between air pollutants and lung cancer incidence. The districts with higher concentrations for all pollutants were mostly in downtown and around the railway station. Districts with a higher concentration for NOx (IRR = 1.05, for each 10 unit increase in air pollutant), benzene (IRR = 3.86), toluene (IRR = 1.50), ethylbenzene (IRR = 5.16), p-xylene (IRR = 9.41), o-xylene (IRR = 7.93), m-xylene (IRR = 2.63) and TBTEX (IRR = 1.21) were significantly associated with higher lung cancer incidence. Districts with a higher multiple air-pollution profile were also associated with more lung cancer incidence (IRR = 1.01). Our study shows a positive association between air pollution and lung cancer incidence. This association was stronger for, respectively, p-xylene, o-xylene, ethylbenzene, benzene, m-xylene and toluene.


2021 ◽  
Vol 756 ◽  
pp. 143998
Author(s):  
Huagui Guo ◽  
Jing Wei ◽  
Xin Li ◽  
Hung Chak Ho ◽  
Yimeng Song ◽  
...  

Author(s):  
Lin Lei ◽  
Anyan Huang ◽  
Weicong Cai ◽  
Ling Liang ◽  
Yirong Wang ◽  
...  

Lung cancer is the most commonly diagnosed cancer in China. The incidence trend and geographical distribution of lung cancer in southern China have not been reported. The present study explored the temporal trend and spatial distribution of lung cancer incidence in Shenzhen from 2008 to 2018. The lung cancer incidence data were obtained from the registered population in the Shenzhen Cancer Registry System between 2008 and 2018. The standardized incidence rates of lung cancer were analyzed by using the joinpoint regression model. The Moran’s I method was used for spatial autocorrelation analysis and to further draw a spatial cluster map in Shenzhen. From 2008 to 2018, the average crude incidence rate of lung cancer was 27.1 (1/100,000), with an annual percentage change of 2.7% (p < 0.05). The largest average proportion of histological type of lung cancer was determined as adenocarcinoma (69.1%), and an increasing trend was observed in females, with an average annual percentage change of 14.7%. The spatial autocorrelation analysis indicated some sites in Shenzhen as a high incidence rate spatial clustering area. Understanding the incidence patterns of lung cancer is useful for monitoring and prevention.


Lung Cancer ◽  
2017 ◽  
Vol 108 ◽  
pp. 55-61 ◽  
Author(s):  
Xue Qin Yu ◽  
Qingwei Luo ◽  
Clare Kahn ◽  
Paul Grogan ◽  
Dianne L. O’Connell ◽  
...  

2017 ◽  
Vol 14 ◽  
pp. 11-15 ◽  
Author(s):  
Nawshirwan G. Rashid ◽  
Saman M. Mohammed ◽  
Roshna M. Abdulla ◽  
Shawnm S.H. Hama ◽  
Twana H.M. HamaSalih ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document