scholarly journals Photobiomodulation Improves the Inflammatory Response and Intracellular Signaling Proteins Linked To Vascular Function and Cell Survival in the Brain of Aged Rats

Author(s):  
Fabrizio Cardoso ◽  
Fernanda Mansur ◽  
Bruno Araújo ◽  
Francisco Gonzalez-Lima ◽  
Sérgio Gomes da Silva

Abstract Photobiomodulation is a non-pharmacological tool widely used to reduce inflammation in many tissues. However, little is known about its effects on the inflammatory response in the aged brain. We conducted the study to examine anti-inflammatory effects of photobiomodulation in aging brains. We used aged rats (20 months old) with control (handled, laser off) or transcranial laser (660 nm wavelength, 100 mW power) treatments for 10 consecutive days and evaluated the level of inflammatory cytokines and chemokines, and the expression and activation of intracellular signaling proteins in the cerebral cortex and the hippocampus. Inflammatory analysis showed that aged rats submitted to transcranial laser treatment had increased levels of IL-1alpha and decreased levels of IL-5 in the cerebral cortex. In the hippocampus, the laser treatment increased the levels of IL-1alpha and decreased levels of IL-5, IL-18 and fractalkine. Regarding the intracellular signaling proteins, a reduction in the ERK and p38 expression and an increase in the STAT3 and ERK activation were observed in the cerebral cortex of aged rats from the laser group. In addition, the laser treatment increased the hippocampal expression of p70S6K, STAT3 and p38 of aged rats. Taken together, our data indicate that transcranial photobiomodulation can improve the inflammatory response and the activation of intracellular signaling proteins linked to vascular function and cell survival in the aged brain.

Author(s):  
Fabrízio dos Santos Cardoso ◽  
Fernanda Cristina Borini Mansur ◽  
Bruno Henrique Silva Araújo ◽  
F. Gonzalez-Lima ◽  
Sérgio Gomes da Silva

2021 ◽  
Vol 15 ◽  
Author(s):  
Fabrízio dos Santos Cardoso ◽  
Fernanda Cristina Borini Mansur ◽  
Rodrigo Álvaro Brandão Lopes-Martins ◽  
Francisco Gonzalez-Lima ◽  
Sérgio Gomes da Silva

Aging is often accompanied by exacerbated activation of cell death-related signaling pathways and decreased energy metabolism. We hypothesized that transcranial near-infrared laser may increase intracellular signaling pathways beneficial to aging brains, such as those that regulate brain cell proliferation, apoptosis, and energy metabolism. To test this hypothesis, we investigated the expression and activation of intracellular signaling proteins in the cerebral cortex and hippocampus of aged rats (20 months old) treated with the transcranial near-infrared laser for 58 consecutive days. As compared to sham controls, transcranial laser treatment increased intracellular signaling proteins related to cell proliferation and cell survival, such as signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p70 ribosomal protein S6 kinase (p70S6K) and protein kinase B (PKB), also known as Akt that is linked to glucose metabolism. In addition, ERK is linked to memory, while ERK and JNK signaling pathways regulate glucose metabolism. Specifically, the laser treatment caused the activation of STAT3, ERK, and JNK signaling proteins in the cerebral cortex. In the hippocampus, the laser treatment increased the expression of p70S6K and STAT3 and the activation of Akt. Taken together, the data support the hypothesis that transcranial laser photobiomodulation improves intracellular signaling pathways linked to cell survival, memory, and glucose metabolism in the brain of aged rats.


2018 ◽  
Vol 110 ◽  
pp. 284-290 ◽  
Author(s):  
Jessica Salles Henrique ◽  
Erivelton Fernandes França ◽  
Fabrizio dos Santos Cardoso ◽  
Fernando Tadeu Serra ◽  
Alexandre Aparecido de Almeida ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 798
Author(s):  
Mara Cirone

The response to invading pathogens such as viruses is orchestrated by pattern recognition receptor (PRR) and unfolded protein response (UPR) signaling, which intersects and converges in the activation of proinflammatory pathways and the release of cytokines and chemokines that harness the immune system in the attempt to clear microbial infection. Despite this protective intent, the inflammatory response, particularly during viral infection, may be too intense or last for too long, whereby it becomes the cause of organ or systemic diseases itself. This suggests that a better understanding of the mechanisms that regulate this complex process is needed in order to achieve better control of the side effects that inflammation may cause while potentiating its protective role. The use of specific inhibitors of the UPR sensors or PRRs or the downstream pathways activated by their signaling could offer the opportunity to reach this goal and improve the outcome of inflammation-based diseases associated with viral infections.


Author(s):  
Bennett O.V. Shum ◽  
Michael S. Rolph ◽  
William A. Sewell

Asthma is a chronic inflammatory disease of the airways, involving recurrent episodes of airway obstruction and wheezing. A common pathological feature in asthma is the presence of a characteristic allergic airway inflammatory response involving extensive leukocyte infiltration, mucus overproduction and airway hyper-reactivity. The pathogenesis of allergic airway inflammation is complex, involving multiple cell types such as T helper 2 cells, regulatory T cells, eosinophils, dendritic cells, mast cells, and parenchymal cells of the lung. The cellular response in allergic airway inflammation is controlled by a broad range of bioactive mediators, including IgE, cytokines and chemokines. The asthmatic allergic inflammatory response has been a particular focus of efforts to develop novel therapeutic agents. Animal models are widely used to investigate inflammatory mechanisms. Although these models are not perfect replicas of clinical asthma, such studies have led to the development of numerous novel therapeutic agents, of which some have already been successful in clinical trials.


2011 ◽  
Vol 110 (3) ◽  
pp. 695-704 ◽  
Author(s):  
Danielle J. McCullough ◽  
Robert T. Davis ◽  
James M. Dominguez ◽  
John N. Stabley ◽  
Christian S. Bruells ◽  
...  

With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O2 delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O2 delivery to O2 uptake, evidenced through improved microvascular Po2 (PmO2), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ∼6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify PmO2 in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline PmO2 (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting PmO2 and the time-delay before PmO2 fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the PmO2 in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.


2017 ◽  
Vol 10 (2) ◽  
Author(s):  
Michael Wille ◽  
Antje Schumann ◽  
Michael Kreutzer ◽  
Michael O Glocker ◽  
Andreas Wree ◽  
...  

2003 ◽  
Vol 23 (21) ◽  
pp. 7838-7848 ◽  
Author(s):  
Nerina Gnesutta ◽  
Audrey Minden

ABSTRACT Normal cell growth requires a precisely controlled balance between cell death and survival. This involves activation of different types of intracellular signaling cascades within the cell. While some types of signaling proteins regulate apoptosis, or programmed cell death, other proteins within the cell can promote survival. The serine/threonine kinase PAK4 can protect cells from apoptosis in response to several different types of stimuli. As is the case for other members of the p21-activated kinase (PAK) family, one way that PAK4 may promote cell survival is by phosphorylating and thereby inhibiting the proapoptotic protein Bad. This leads in turn to the inhibition of effector caspases such as caspase 3. Here we show that in response to cytokines which activate death domain-containing receptors, such as the tumor necrosis factor and Fas receptors, PAK4 can inhibit the death signal by a different mechanism. Under these conditions, PAK4 inhibits apoptosis early in the caspase cascade, antagonizing the activation of initiator caspase 8. This inhibition, which does not require PAK4's kinase activity, may involve inhibition of caspase 8 recruitment to the death domain receptors. This role in regulating initiator caspases is an entirely novel role for the PAK proteins and suggests a new mechanism by which these proteins promote cell survival.


Sign in / Sign up

Export Citation Format

Share Document