scholarly journals Fine-scale variation in projected climate change presents opportunities for biodiversity conservation in Europe

Author(s):  
Tomáš Hlásny ◽  
Martin Mokroš ◽  
Laura Dobor ◽  
Katarína Merganičová ◽  
Martin Lukac

Abstract Climate change is a major threat to global biodiversity, although projected changes show remarkable geographical and temporal variability. Understanding this variability allows for the identification of regions where the present-day conservation objectives may be at risk or where opportunities for biodiversity conservation emerge. We use a multi-model ensemble of regional climate models to identify areas with significantly high and low climate stability persistent throughout the 21st century in Europe. We then confront our predictions with the land coverage of three prominent biodiversity conservation initiatives at two scales. The continental-scale assessment shows that the most instable future climate in Europe is likely to occur at low and high latitudes, with the Iberian Peninsula and the Boreal zones identified as prominent areas of climatic instability. A follow-up regional scale investigation shows that robust climatic refugia exist even within the highly exposed southern and northern macro-regions. About 23–31 % of assessed biodiversity conservation sites in Europe coincide with these identified climatic refugia, we contend that these sites should be prioritised in the formulation of future conservation priorities as the stability of future climate is one of key factors determining their conservation prospects. Although such focus on climate refugia cannot halt the ongoing biodiversity loss, along with measures such as the resilience-based stewardship, it may improve the effectiveness of biodiversity conservation under climate change.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomáš Hlásny ◽  
Martin Mokroš ◽  
Laura Dobor ◽  
Katarína Merganičová ◽  
Martin Lukac

AbstractClimate change is a major threat to global biodiversity, although projected changes show remarkable geographical and temporal variability. Understanding this variability allows for the identification of regions where the present-day conservation objectives may be at risk or where opportunities for biodiversity conservation emerge. We use a multi-model ensemble of regional climate models to identify areas with significantly high and low climate stability persistent throughout the twenty-first century in Europe. We then confront our predictions with the land coverage of three prominent biodiversity conservation initiatives at two scales. The continental-scale assessment shows that areas with the least stable future climate in Europe are likely to occur at low and high latitudes, with the Iberian Peninsula and the Boreal zones identified as prominent areas of low climatic stability. A follow-up regional scale investigation shows that robust climatic refugia exist even within the highly exposed southern and northern macro-regions. About 23–31% of assessed biodiversity conservation sites in Europe coincide with areas of high future climate stability, we contend that these sites should be prioritised in the formulation of future conservation priorities as the stability of future climate is one of the key factors determining their conservation prospects. Although such focus on climate refugia cannot halt the ongoing biodiversity loss, along with measures such as resilience-based stewardship, it may improve the effectiveness of biodiversity conservation under climate change.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Wolfgang Falk ◽  
Nils Hempelmann

Climate is the main environmental driver determining the spatial distribution of most tree species at the continental scale. We investigated the distribution change of European beech and Norway spruce due to climate change. We applied a species distribution model (SDM), driven by an ensemble of 21 regional climate models in order to study the shift of the favourability distribution of these species. SDMs were parameterized for 1971–2000, as well as 2021–2050 and 2071–2100 using the SRES scenario A1B and three physiological meaningful climate variables. Growing degree sum and precipitation sum were calculated for the growing season on a basis of daily data. Results show a general north-eastern and altitudinal shift in climatological favourability for both species, although the shift is more marked for spruce. The gain of new favourable sites in the north or in the Alps is stronger for beech compared to spruce. Uncertainty is expressed as the variance of the averaged maps and with a density function. Uncertainty in species distribution increases over time. This study demonstrates the importance of data ensembles and shows how to deal with different outcomes in order to improve impact studies by showing uncertainty of the resulting maps.


2021 ◽  
Author(s):  
Cristina Andrade ◽  
Joana Contente

<p>Projections of the Köppen-Geiger climate classification under future climate change for the Iberian Peninsula (IP) are investigated by using a seven-ensemble mean of regional climate models (RCMs) attained from EURO-CORDEX. Maps with predicted future scenarios for temperature, precipitation and Köppen-Geiger classification are analyzed under RCP4.5 and RCP8.5 in Iberia. Widespread statistically significant shifts in temperature, precipitation and climate regimes are projected between 2041 and 2070, with higher expression under RCP8.5. An overall increase of temperatures and a decrease of precipitation in the south-southeast is predicted. Of the two climate types dry (B) and temperate (C), the dominant one was C in 86% of the Iberian territory for 1961-1990, predicted to decrease by 8.0% towards 2041-2070 under RCP4.5 (9.1% under RCP8.5). The hot-summer Mediterranean climate (CSa) will progressively replaces CSb (warm-summer) type towards north in the northwestern half of Iberia until 2070. This shift, depicted by the SSIM index, is noticeable in Portugal with a projected establishment of the CSa climate by 2041-2070. A predicted retreat of humid subtropical (Cfa) and temperate oceanic (Cfb) areas in the northeast towards Pyrenees region is noteworthy, alongside an increase of desert (BW) and semi-desert (BS) climates (7.8% and 9%) that progressively sets in the southeast (between Granada and Valencia). Climate types BSh and BWh (hot semi-desert and hot-desert, respectively), non-existent in 1961-1990 period, are projected to represent 2.8% of territory in 2041-2070 under RCP4.5 (5% under RCP8.5). The statistically significant projected changes hint at the disappearance of some vegetation species in certain regions of Iberia, with an expected increase of steppe, bush, grassland and wasteland vegetation cover, typical of dry climates in the southeast.</p><p><strong>Funding:</strong> This research was funded by National Funds by FCT - Portuguese Foundation for Science and Technology, under the project <strong>UIDB/04033/2020.</strong></p>


2020 ◽  
Vol 162 (2) ◽  
pp. 645-665
Author(s):  
Melissa S. Bukovsky ◽  
Linda O. Mearns

Abstract The climate sensitivity of global climate models (GCMs) strongly influences projected climate change due to increased atmospheric carbon dioxide. Reasonably, the climate sensitivity of a GCM may be expected to affect dynamically downscaled projections. However, there has been little examination of the effect of the climate sensitivity of GCMs on regional climate model (RCM) ensembles. Therefore, we present projections of temperature and precipitation from the ensemble of projections produced as a part of the North American branch of the international Coordinated Regional Downscaling Experiment (NA-CORDEX) in the context of their relationship to the climate sensitivity of their parent GCMs. NA-CORDEX simulations were produced at 50-km and 25-km resolutions with multiple RCMs which downscaled multiple GCMs that spanned nearly the full range of climate sensitivity available in the CMIP5 archive. We show that climate sensitivity is a very important source of spread in the NA-CORDEX ensemble, particularly for temperature. Temperature projections correlate with driving GCM climate sensitivity annually and seasonally across North America not only at a continental scale but also at a local-to-regional scale. Importantly, the spread in temperature projections would be reduced if only low, mid, or high climate sensitivity simulations were considered, or if only the ensemble mean were considered. Precipitation projections correlate with climate sensitivity, but only at a continental scale during the cold season, due to the increasing influence of other processes at finer scales. Additionally, it is shown that the RCMs do alter the projection space sampled by their driving GCMs.


2021 ◽  
Vol 11 (5) ◽  
pp. 2403
Author(s):  
Daniel Ziche ◽  
Winfried Riek ◽  
Alexander Russ ◽  
Rainer Hentschel ◽  
Jan Martin

To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6.


2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


Sign in / Sign up

Export Citation Format

Share Document