Development of a Novel Selective Medium for Culture of Gram-negative Bacteria

Author(s):  
Shooq Yousef Al-blooshi ◽  
Mustafa Amir Abdul Latif ◽  
Nour K. Sabaneh ◽  
Michael Mgaogao ◽  
Ashfaque Hossain

Abstract Objective: Although many bacterial culture media are commercially available, there is a continuous effort to develop better selective media for bacteria, which cannot be grown on existing media. While exploring antibacterial properties of clove, we observed that it has the potential to selectively inhibit growth of certain types of bacteria. This led us to do the experiments which resulted in developing the media which selectively allowed the growth of only Gram-negative bacteria, while inhibiting the Gram-positive bacteria. Results: Mueller Hinton Agar (MHA) was used as the base media and was modified to develop MHA-C15 (MHA containing 15 % volume / volume water extract of clove). Different Gram-negative bacterial pathogens including Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium and Pseudomonas aeruginosa grew on MHA-C15. However, none of the major Gram-positive bacterial pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus mutans, Bacillus spp. and Enterococcus spp. grew on it. Taken together, these findings show that MHA-C15 is a newly developed selective media for culture of Gram-negative bacteria.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shooq Yousef Al-blooshi ◽  
Mustafa Amir Abdul Latif ◽  
Nour K. Sabaneh ◽  
Michael Mgaogao ◽  
Ashfaque Hossain

Abstract Objective Although many bacterial culture media are available commercially, there is a continuous effort to develop better selective media for bacteria, which cannot be grown on existing media. While exploring antibacterial properties of clove, we observed that it has the potential to selectively inhibit growth of certain types of bacteria. This led us to do the experiments, which resulted in developing a new media which selectively allowed the growth of only Gram-negative bacteria, while inhibiting the Gram-positive bacteria. Results Mueller Hinton Agar (MHA) was used as the base media and was modified to develop MHA-C15 (MHA containing 15% volume/volume water extract of clove). Gram-negative bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium and Pseudomonas aeruginosa grew on MHA-C15. However, none of the major Gram-positive bacterial pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus mutans, Bacillus spp. and Enterococcus spp. grew on it. Taken together, these findings show that MHA-C15 is a newly developed selective media for culture of Gram-negative bacteria.


2016 ◽  
Vol 34 (2) ◽  
pp. 35
Author(s):  
Prayna P. P. Maharaj ◽  
Riteshma Devi ◽  
Surendra Prasad

Fiji is highly populated with plants containing essential oils (EO). The essential oils extracted from the leaves of the selected Fijian leafy plants were screened against two Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis). The agar diffusion method was used to examine the antimicrobial activities of the extracted EO. All the EO tested showed antibacterial properties against one or more strains while none of the EO was active against Pseudomonas aeruginosa. Viburnum lantana (Wayfaring tree), Annona muricata (Soursop), Coleus amboinicus (Spanish thyme) and Cinnamomum zeylancium (Cinnamon) showed good inhibition against both Gram-positive and Gram-negative bacteria and proved as worthy source of antimicrobial agent. These findings will help the Pacific population to use the studied plants leaves as antimicrobial agent.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
José Carlos Vilar Junior ◽  
Daylin Rubio Ribeaux ◽  
Carlos Alberto Alves da Silva ◽  
Galba Maria De Campos-Takaki

This research aims to study the production of chitosan from shrimp shell (Litopenaeus vannamei) of waste origin using two chemical methodologies involving demineralization, deproteinization, and the degree of deacetylation. The evaluation of the quality of chitosan from waste shrimp shells includes parameters for the yield, physical chemistry characteristics by infrared spectroscopy (FT-IR), the degree of deacetylation, and antibacterial activity. The results showed (by Method 1) extraction yields for chitin of 33% and for chitosan of 49% and a 76% degree of deacetylation. Chitosan obtained by Method 2 was more efficient: chitin (36%) and chitosan (63%), with a high degree of deacetylation (81.7%). The antibacterial activity was tested against Gram-negative bacteria (Stenotrophomonas maltophiliaandEnterobacter cloacae) and Gram-positiveBacillus subtilisand the Minimum Inhibitory Concentrations (MIC) and the Minimum Bactericidal Concentration (MBC) were determined. Method 2 showed that extracted chitosan has good antimicrobial potential against Gram-positive and Gram-negative bacteria and that the process is viable.


2006 ◽  
Vol 50 (1) ◽  
pp. 385-387 ◽  
Author(s):  
Ed T. Buurman ◽  
Kenneth D. Johnson ◽  
Roxanne K. Kelly ◽  
Kathy MacCormack

ABSTRACT Naphthyridones that were recently described as a class of translation inhibitors in gram-positive bacteria mediate their mode of action via GyrA in Haemophilus influenzae and Escherichia coli. These are the first examples of compounds in which modes of action in different bacterial pathogens are mediated through widely different targets.


2011 ◽  
Vol 14 (1) ◽  
pp. 85-89 ◽  
Author(s):  
Wally J. Bartfay ◽  
Emma Bartfay ◽  
Julia Green Johnson

The emergence of new pathogens and the increase in the number of multidrug-resistant strains in well-established pathogens during the past decade represent a growing public health concern globally. With the current lack of research and development of new antibiotics by large pharmaceutical companies due to poor financial returns, new alternatives need to be explored including natural herbal or plant-based extracts with reported antibacterial properties. Willow herb ( Epilobium angustifolium) preparations have been used in traditional aboriginal and folk medicine preparations externally as an antiphlogistic to treat prostate and gastrointestinal disorders and as an antiseptic to treat infected wounds. The authors hypothesized that a whole plant extract of willow herb would exhibit antimicrobial properties on a variety of both Gram-positive and gram-negative bacteria in culture. The authors found that, in comparison to growth controls, willow herb extract significantly inhibited the growth of Micrococcus luteus ( p < .01), Staphylococcus aureus ( p < .05), Escherichia coli ( p < .001), and Pseudomonas aeruginosa ( p < .001). They also found that willow herb extract inhibited the growth of bacteria in culture more effectively than vancomycin ( p < .05) or tetracycline ( p < .004). These results provide preliminary support for the traditional folkloric claim that the plant willow herb possesses antibacterial properties against a variety of gram-positive and gram-negative bacteria. Given that whole plant extract was utilized for this study, further investigations are warranted to determine which specific part of the plant (i.e., leaves, stem, roots, and flowers) possess the antibacterial properties.


Author(s):  
Sotianingsih Sotianingsih ◽  
Samsirun H. ◽  
Lipinwati Lipinwati

Pneumonia is defined as an inflammation of the lungs caused by microorganisms (bacteria, viruses, fungi, parasites). This research aimed to determine the pneumonia-causing bacteria along with the sensitivity and the antibiotic resistance test. This research was a descriptive study with samples of ICU pneumonia patients at Raden Mattaher Regional Hospital during the study period. All samples were consecutively selected. Samples for blood culture were incubated in the BactAlert device, whereas the sensitivity test was then performed using Vitex instruments. Sputum was previously enriched with BHI media and then cultured on culture media, and sensitivity test with the Vitex instruments was carried out. Of the 354 ICU patients during the study period, 30 patients (11.8%) had pneumonia, but only 19 patients could undergo sputum culture. Five of 19 patients were infected with Gram-positive bacteria, and 14 patients were infected with Gram-negative bacteria. The most commonly found bacteria were Klebsiella pneumonia (36.84%), followed by Acinetobacter baumanii (21.05%) and Pseudomonas aeruginosa (10.53%). Gram-negative bacteria obtained from sputum culture in this study were resistant to almost all antibiotic groups, especially penicillin, cephalosporin, quinolone, and tetracycline groups. Gram-positive bacteria obtained from sputum culture in this study were resistant to the penicillin antibiotic. The most commonly found bacteria were Klebsiella pneumonia (36.84%), followed by Acinetobacter baumanii (21.05%) and Pseudomonas aeruginosa (10.53%). The bacteria cultured from the sputum showed multidrug resistance mainly to the penicillin and cephalosporin antibiotic. This research data can be used to consider the treatment of pneumonia patients to decide more appropriate therapy.


2018 ◽  
Vol 10 (3) ◽  
pp. 622-628
Author(s):  
Fitri Arum Sasi ◽  
Hermin Pancasakti Kusumaningrum ◽  
Anto Budiharjo

Indigenous bacteria are able to remove the metals contamination in environment. This study aimed to assess the resistance of bacterial species to Zinc (Zn) in Banger River, Pekalongan City. The bacteria from three different parts of Banger River were isolated and inoculated in Zn-selective medium. Then, molecular identification to determine the bacteria species was conducted using polymerase chain reaction (PCR) by applying forward-reverse 16SrRNA gene primers. The sequences analysis was conducted using MUSCLE and MEGA6. There were seven dominant species that possibly resistant to Zn. Approximately, every isolate could reach more than 95 % from 2000 ppm of Zn in the medium. The higher absorption of Zn was found in Z5 isolate. The seven bacteria species were clustered into nine genera i.e. Klebsiela, Xenorhabdus, Cronobacter, Enterobacter, Escherichia, Shigella and Sporomusa known as Gram Negative bacteria and Clostridium and Bacillus as Gram Positive bacteria. In Gram Positive bacteria, especially Bacillus sp, carboxyl group in peptidoglycan play a role as metal binder. In Gram-negative bacteria, lipopolysaccharide (LPS) which is highly anionic component on the outer membrane, able to catch the Zn. Besides that, Enterobacter activates endogen antioxidants such as glutathione peroxidase (GSHPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD). The research found there was possible seven novel indigenous bacteria species in Banger that able to remove Zn from the sediment extremely. This finding can be developed as an eco-friendly approach to reduce metals pollution using local microorganisms.


2015 ◽  
Vol 10 (3) ◽  
pp. 14-22
Author(s):  
S Pant ◽  
KR Bhusal ◽  
S Manandhar

By mistake the wrong PDF was loaded for this article. The correct PDF was loaded on 19th September 2016. OBJECTIVES This study was designed with the objectives of describing the distribution pattern of microorganisms responsible for causing LRTI in the workers of garment industries.MATERIALS AND METHODS A total of 198 cases of suspected person of Lower Respiratory Tract infection (LRTI) LRTI were included in this study. This study was conducted between November 2009 to April 2010. Specimen for the study was expectorated sputum. Gram-stain, Ziehl-Neelsen stains and culture were performed.RESULTS On direct microscopic examination, 20.51% were Gram positive bacteria, 79.48% were Gram negative bacteria and 4% were smear positive AFB. On culture sensitivity examination, 22% percent showed growth of different bacteria in different culture media. The bacteria isolated from the samples included Klebsiella pneumoniae (15.38%), Proteus mirabilis (15.38%) and Citrobacterfruendii (15.38%). Gram Negative bacteria were found most susceptible to Ciprofloxacin (92.30%, 24/26) and Amikacin (92.30%, 24/26). Similarly, Gram Positive bacteria were found most susceptible to Ciprofloxacin (100%, 8/8) followed by Cloxacillin and Cephalexin (87.5%, 7/8). Smear positive AFB was significantly associated with not using the protective measures (mask) by workers and presence of symptoms (cough for more than two weeks, night sweat, hemoptysis and anorexia) (p=0.031). Culture positivity was significantly associated with symptoms like production of purulent sputum (p=0.045).CONCLUSION There was insignificant association between LRTI and risk factors present in working room of garment industries. Most of the isolates were sensitive to Ciprofloxacin and resistance to Ampicillin and Cephalexin.Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 14-22


2006 ◽  
Vol 50 (8) ◽  
pp. 2666-2672 ◽  
Author(s):  
Shahar Rotem ◽  
Inna Radzishevsky ◽  
Amram Mor

ABSTRACT Antimicrobial peptides are widely believed to exert their effects by nonspecific mechanisms. We assessed the extent to which physicochemical properties can be exploited to promote discriminative activity by manipulating the N-terminal sequence of the 13-mer dermaseptin derivative K4-S4(1-13) (P). Inhibitory activity determined in culture media against 16 strains of bacteria showed that when its hydrophobicity and charge were changed, P became predominantly active against either gram-positive or gram-negative bacteria. Thus, conjugation of various aminoacyl-lysin moieties (e.g., aminohexyl-K-P) led to inactivity against gram-positive bacteria (MIC50 > 50 μM) but potent activity against gram-negative bacteria (MIC50, 6.2 μM). Conversely, conjugation of equivalent acyls to the substituted analog M4-S4(1-13) (e.g., hexyl-M4-P) led to inactivity against gram-negative bacteria (MIC50 > 50 μM) but potent activity against gram-positive bacteria (MIC50, 3.1 μM). Surface plasmon resonance experiments, used to investigate peptides' binding properties to lipopolysaccharide-containing idealized phospholipid membranes, suggest that although the acylated derivatives have increased lipophilic properties with parallel antibacterial behavior, hydrophobic derivatives are prevented from reaching the cytoplasmic membranes of gram-negative bacteria. Moreover, unlike modifications that enhanced the activity against gram-positive bacteria, which also enhanced hemolysis, we found that modifications that enhanced activity against gram-negative bacteria generally reduced hemolysis. Thus, compared with the clinically tested peptides MSI-78 and IB-367, the dermaseptin derivative aminohexyl-K-P performed similarly in terms of potency and bactericidal kinetics but was significantly more selective in terms of discrimination between bacteria and human erythrocytes. Overall, the data suggest that similar strategies maybe useful to derive potent and safe compounds from known antimicrobial peptides.


2013 ◽  
Vol 7 (2) ◽  
pp. 13-16
Author(s):  
Durdana Chowdhury ◽  
Sanya Tahmina Jhora ◽  
Mili Rani Saha ◽  
Najmun Nahar

Bacterial pathogens were isolated from  pus, wound swab, urine, blood and throat swab. A total  of 300 samples were collected from Sir Salimullah Medical College & Mitford Hospital (SSMC & MH), BIRDEM and National Medical College (NMCH) and processed following standard microbiological methods. Antibiotic susceptibility testing were performed on pure culture isolates by employing Kirby-Bauer disc-diffusion method for the commonly used antibiotics. 326 (93.33%) bacterial pathogens were isolated from 300 patients. Single bacterial pathogen was present in 78% cases and mixed bacterial pathogens were in 15.40% cases.  Staphylococcus aureus was the predominant species (38.66%) followed by Escherichia coli (38%), Pseudomonas spp. (13.33%), Proteus spp. (8.33%), CoNS (7.66%), Serratia spp (2.85%), Klebsiella spp. (2.00%) and  Acinetobacter spp. (0.97%). Resistance rate towards amoxicillin, ciprofloxacin, co-trimoxazole and  ceftriaxone were high among both Gram-positive and Gram-negative isolates. However, both groups showed good susceptibility to gentamicin and levofloxacin. S. aureus and CoNS showed 100% sensitivity to vancomycin and all isolated Gram negative organisms showed 98-100% sensitivity to imipenem.These results indicate that gentamicin and levofloxacin may be convenient alternative antimicrobial agent for both Gram-positive and Gram-negative bacteria and vancomycin for Gram positive and imipenem for Gram negative bacteria as well.DOI: http://dx.doi.org/10.3329/bjmm.v7i2.19327 Bangladesh J Med Microbiol 2013; 07(02): 13-16


Sign in / Sign up

Export Citation Format

Share Document