Identifying the potential role of IL-1β in molecular mechanisms of disc degeneration using gene expression profiling and bioinformatics analysis

Author(s):  
Ning Fan ◽  
Shuo Yuan ◽  
Yong Hai ◽  
Peng Du ◽  
Jian Li ◽  
...  

Abstract Background: Inflammatory processes exacerbated by IL-1β are believed to be key mediators of disc degeneration and low back pain. However, the underlying mechanism remains unclear. We performed a bioinformatics analysis to identify the key genes that were differentially expressed between degenerative intervertebral disc cells with and without exposure to interleukin (IL)-1β, and explore the related signaling pathways and interaction networks.Methods: The microarray data were downloaded from the Gene Expression Omnibus (GSE 27494). Then, analyses of the gene ontology, signaling pathways, and interaction networks for the differentially expressed genes (DEGs) were conducted using tools including the Database for Annotation, Visualization, and Integrated Discovery (DAVID), Metascape, Gene Set Enrichment Analysis (GSEA),Search Tool for the Retrieval of Interacting Genes (STRING), Cytoscape, the Venn method, and packages of the R computing language.Results: A total of 260 DEGs were identified, including 161 upregulated genes and 99 down-regulated genes. Gene Ontology (GO) annotation analysis showed that these DEGs were mainly associated with the extracellular region, chemotaxis, taxis, cytokine activity, and cytokine receptor binding. A Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis showed that these DEGs were mainly involved in the interactions of cytokine-cytokine receptor interaction, rheumatoid arthritis, tumor necrosis factor (TNF) signaling pathway, salmonella infection, and chemokine signaling pathway. The interaction network analysis indicated that 10 hub genes, including CXCL8, CXCL1, CCL20, CXCL2, CXCL5, CXCL3, CXCL6, C3, PF4, and GPER1 may play key roles in intervertebral disc degeneration.Conclusions: Bioinformatic analysis showed that CXCL8 and other 9 key genes may play a role in the development of disc degeneration induced by inflammatory reactions, and can be used to identify the potential therapeutic target genes.

2021 ◽  
Author(s):  
Ning Fan ◽  
Shuo Yuan ◽  
Yong Hai ◽  
Peng Du ◽  
Jian Li ◽  
...  

Abstract BackgroundInflammatory processes exacerbated by IL-1β are believed to be key mediators of disc degeneration and low back pain. However, the underlying mechanism remains unclear. We performed a bioinformatics analysis to identify the key genes that were differentially expressed between degenerative intervertebral disc cells with and without exposure to interleukin (IL)-1β, and explore the related signaling pathways and interaction networks.MethodsThe microarray data were downloaded from the Gene Expression Omnibus (GSE 27494). Then, analyses of the gene ontology, signaling pathways, and interaction networks for the differentially expressed genes (DEGs) were conducted using tools including the Database for Annotation, Visualization, and Integrated Discovery (DAVID), Metascape, Gene Set Enrichment Analysis (GSEA), Search Tool for the Retrieval of Interacting Genes (STRING), Cytoscape, the Venn method, and packages of the R computing language.ResultsA total of 260 DEGs were identified, including 161 upregulated genes and 99 down-regulated genes. Gene Ontology (GO) annotation analysis showed that these DEGs were mainly associated with the extracellular region, chemotaxis, taxis, cytokine activity, and cytokine receptor binding. A Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis showed that these DEGs were mainly involved in the interactions of cytokine-cytokine receptor interaction, rheumatoid arthritis, tumor necrosis factor (TNF) signaling pathway, salmonella infection, and chemokine signaling pathway. The interaction network analysis indicated that 10 hub genes, including CXCL8, CXCL1, CCL20, CXCL2, CXCL5, CXCL3, CXCL6, C3, PF4, and GPER1 may play key roles in intervertebral disc degeneration.ConclusionsBioinformatic analysis showed that CXCL8 and other 9 key genes may play a role in the development of disc degeneration induced by inflammatory reactions, and can be used to identify the potential therapeutic target genes.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1037.2-1038
Author(s):  
X. Sun ◽  
S. X. Zhang ◽  
S. Song ◽  
T. Kong ◽  
C. Zheng ◽  
...  

Background:Psoriasis is an immune-mediated, genetic disease manifesting in the skin or joints or both, and also has a strong genetic predisposition and autoimmune pathogenic traits1. The hallmark of psoriasis is sustained inflammation that leads to uncontrolled keratinocyte proliferation and dysfunctional differentiation. And it’s also a chronic relapsing disease, which often necessitates a long-term therapy2.Objectives:To investigate the molecular mechanisms of psoriasis and find the potential gene targets for diagnosis and treating psoriasis.Methods:Total 334 gene expression data of patients with psoriasis research (GSE13355 GSE14905 and GSE30999) were obtained from the Gene Expression Omnibus database. After data preprocessing and screening of differentially expressed genes (DEGs) by R software. Online toll Metascape3 was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. Interactions of proteins encoded by DEGs were discovered by Protein-protein interaction network (PPI) using STRING online software. Cytoscape software was utilized to visualize PPI and the degree of each DEGs was obtained by analyzing the topological structure of the PPI network.Results:A total of 611 DEGs were found to be differentially expressed in psoriasis. GO analysis revealed that up-regulated DEGs were mostly associated with defense and response to external stimulus while down-regulated DEGs were mostly associated with metabolism and synthesis of lipids. KEGG enrichment analysis suggested they were mainly enriched in IL-17 signaling, Toll-like receptor signaling and PPAR signaling pathways, Cytokine-cytokine receptor interaction and lipid metabolism. In addition, top 9 key genes (CXCL10, OASL, IFIT1, IFIT3, RSAD2, MX1, OAS1, IFI44 and OAS2) were identified through Cytoscape.Conclusion:DEGs of psoriasis may play an essential role in disease development and may be potential pathogeneses of psoriasis.References:[1]Boehncke WH, Schon MP. Psoriasis. Lancet 2015;386(9997):983-94. doi: 10.1016/S0140-6736(14)61909-7 [published Online First: 2015/05/31].[2]Zhang YJ, Sun YZ, Gao XH, et al. Integrated bioinformatic analysis of differentially expressed genes and signaling pathways in plaque psoriasis. Mol Med Rep 2019;20(1):225-35. doi: 10.3892/mmr.2019.10241 [published Online First: 2019/05/23].[3]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6 [published Online First: 2019/04/05].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Da-Qiu Chen ◽  
Xiang-Sheng Kong ◽  
Xue-Bin Shen ◽  
Mao-Zhi Huang ◽  
Jian-Ping Zheng ◽  
...  

Background. Acute myocardial infarction (AMI) is a common disease with high morbidity and mortality around the world. The aim of this research was to determine the differentially expressed genes (DEGs), which may serve as potential therapeutic targets or new biomarkers in AMI. Methods. From the Gene Expression Omnibus (GEO) database, three gene expression profiles (GSE775, GSE19322, and GSE97494) were downloaded. To identify the DEGs, integrated bioinformatics analysis and robust rank aggregation (RRA) method were applied. These DEGs were performed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses by using Clusterprofiler package. In order to explore the correlation between these DEGs, the interaction network of protein-protein internet (PPI) was constructed using the STRING database. Utilizing the MCODE plug-in of Cytoscape, the module analysis was performed. Utilizing the cytoHubba plug-in, the hub genes were screened out. Results. 57 DEGs in total were identified, including 2 down- and 55 upregulated genes. These DEGs were mainly enriched in cytokine-cytokine receptor interaction, chemokine signaling pathway, TNF signaling pathway, and so on. The module analysis filtered out 18 key genes, including Cxcl5, Arg1, Cxcl1, Spp1, Selp, Ptx3, Tnfaip6, Mmp8, Serpine1, Ptgs2, Il6, Il1r2, Il1b, Ccl3, Ccr1, Hmox1, Cxcl2, and Ccl2. Ccr1 was the most fundamental gene in PPI network. 4 hub genes in total were identified, including Cxcl1, Cxcl2, Cxcl5, and Mmp8. Conclusion. This study may provide credible molecular biomarkers in terms of screening, diagnosis, and prognosis for AMI. Meanwhile, it also serves as a basis for exploring new therapeutic target for AMI.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 680.1-680
Author(s):  
C. Zheng ◽  
S. X. Zhang ◽  
R. Zhao ◽  
L. Cheng ◽  
T. Kong ◽  
...  

Background:Dermatomyositis (DM) is a chronic systemic autoimmune disease characterized by inflammatory infiltrates in the skin and muscle1. The genes and pathways in the inflamed myopathies in patients with DM are poorly understood2.Objectives:To identify the key genes and pathways associated with DM and further discover its pathogenesis.Methods:Muscle tissue gene expression profile (GSE143323) were acquired from the GEO database, which included 39 DM samples and 20 normal samples. The differentially expressed genes (DEGs) in DM muscle tissue were screened by adopting the R software. Gene ontology (GO) and Kyoto Encyclopedia of Genome (KEGG) pathway enrichment analysis was performed by Metascape online analysis tool. A protein-protein interaction (PPI) network was then constructed by STRING software using the genes in significantly different pathways. Network of DEGs was analyzed by Cytoscape software. And degree of nodes was used to screen key genes.Results:Totally, 126 DEGs were obtained, which contained 122 up-regulated and 4 down-regulated. GO analysis revealed that most of the DEGs were significantly enriched in type I interferon signaling pathway, response to interferon-gamma, collagen-containing extracellular matrix, response to interferon-alpha and bacterium, positive regulation of cell death, leukocyte chemotaxis. KEGG pathway analysis showed that upregulated DEGs enhanced pathways associated with the hepatitis C, complement and coagulation cascades, p53 signaling pathway, RIG-I-like receptor signaling, Osteoclast differentiation, and AGE-RAGE signaling pathway. Ten hub genes were identified in DM, they were ISG15, IRF7, STAT1, MX1, OASL, OAS2, OAS1, OAS3, GBP1, and IRF9 according to the Cytoscape software and cytoHubba plugin.Conclusion:The findings from this bioinformatics network analysis study identified the key hub genes that might provide new molecular markers for its diagnosis and treatment.References:[1]Olazagasti JM, Niewold TB, Reed AM. Immunological biomarkers in dermatomyositis. Curr Rheumatol Rep 2015;17(11):68. doi: 10.1007/s11926-015-0543-y [published Online First: 2015/09/26].[2]Chen LY, Cui ZL, Hua FC, et al. Bioinformatics analysis of gene expression profiles of dermatomyositis. Mol Med Rep 2016;14(4):3785-90. doi: 10.3892/mmr.2016.5703 [published Online First: 2016/09/08].[3]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6 [published Online First: 2019/04/05].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


2019 ◽  
Author(s):  
Zheng Wang ◽  
Jie Zhu ◽  
Lixian Ma

AbstractCrohn’s disease is a type of inflammatory bowel disease posing a significant threat to human health all over the world. Genome-wide gene expression profiles of mucosal colonic biopsies have provided some insight into the molecular mechanisms of Crohn’s disease. However, the exact pathogenesis is unclear. This study aimed to identify key genes and significant signaling pathways associated with Crohn’s disease by bioinformatics analysis. To identify key genes, an integrated analysis of gene expression signature was conducted using a robust rank aggregation approach. A total of 179 Crohn’s disease patients and 94 healthy controls from nine public microarray datasets were included. MMP1 and CLDN8 were two key genes screened from the differentially expressed genes. Connectivity Map predicted several small molecules as possible adjuvant drugs to treat CD. Besides, we used weighted gene co-expression network analysis to explore the co-expression modules associated with Crohn’s disease pathogenesis. Seven main functional modules were identified, of which black module showed the highest correlation with Crohn’s disease. The genes in black module mainly enriched in Interferon Signaling and defense response to virus. Blue module was another important module and enriched in several signaling pathways, including extracellular matrix organization, inflammatory response and blood vessel development. There were also several other meaningful functional modules which enriched in many biological processes. The present study identified a number of key genes and pathways correlated with Crohn’s disease and potential drugs to combat it, which might offer insights into Crohn’s disease pathogenesis and provide a clue to potential treatments.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hantao Wang ◽  
Wenhui Liu ◽  
Bo Yu ◽  
Xiaosheng Yu ◽  
Bin Chen

Background: Intervertebral disc degeneration impairs the quality of patients lives. Even though there has been development of many therapeutic strategies, most of them remain unsatisfactory due to the limited understanding of the mechanisms that underlie the intervertebral disc degeneration.Questions/purposes: This study is meant to identify the key modules and hub genes related to the annulus fibrosus in intervertebral disc degeneration (IDD) through: (1) constructing a weighted gene co-expression network; (2) identifying key modules and hub genes; (3) verifying the relationships of key modules and hub genes with IDD; and (4) confirming the expression pattern of hub genes in clinical samples.Methods: The Gene Expression Omnibus provided 24 sets of annulus fibrosus microarray data. Differentially expressed genes between the annulus fibrosus of degenerative and non-degenerative intervertebral disc samples have gone through the Gene Ontology (GO) and pathway analysis. The construction of a gene network and classification of genes into different modules were conducted through performing Weighted Gene Co-expression Network Analysis. The identification of modules and hub genes that were most related to intervertebral disc degeneration was proceeded. In order to verify the relationships of the module and hub genes with intervertebral disc degeneration, Ingenuity Pathway Analysis was operated. Clinical samples were adopted to help verify the hub gene expression profile.Results: One thousand one hundred ninety differentially expressed genes were identified. Terms and pathways associated with intervertebral disc degeneration were presented by GO and pathway analysis. The construction of a Weighted Gene Coexpression Network was completed and clustering differentially expressed genes into four modules was also achieved. The module with the lowest P-value and the highest absolute correlation coefficient was selected and its relationship with intervertebral disc degeneration was confirmed by Ingenuity Pathway Analysis. The identification of hub genes and the confirmation of their expression profile were also realized.Conclusions: This study generated a comprehensive overview of the gene networks underlying annulus fibrosus in intervertebral disc degeneration.Clinical Relevance: Modules and hub genes identified in this study are highly associated with intervertebral disc degeneration, and may serve as potential therapeutic targets for intervertebral disc degeneration.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuai Cao ◽  
Jie Li ◽  
Kai Yang ◽  
Haopeng Li

Abstract Background and objective Intervertebral disc degeneration (IDD) is a complex multifactorial and irreversible pathological process. In IDD, multiple competing endogenous RNAs (ceRNA, including mRNA, lncRNA, and pseudogenes) can compete to bind with miRNAs. However, the potential metabolic signatures in nucleus pulposus (NP) cells remain poorly understood. This study investigated key metabolic genes and the ceRNA regulatory mechanisms in the pathogenesis of IDD based on microarray datasets. Methods We retrieved and downloaded four independent IDD microarray datasets from the Gene Expression Omnibus. Combining the predicted interactions from online databases (miRcode, miRDB, miRTarBase, and TargetScan), differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified. A ceRNA network was constructed and annotated using GO and KEGG pathway enrichment analyses. Moreover, we searched the online metabolic gene set and used support vector machine (SVM) to find the critical metabolic DEmRNA(s) and other DERNAs. Differential gene expression was validated with a merged dataset. Results A total of 45 DEmRNAs, 36 DElncRNAs, and only one DEmiRNA (miR-338-3p) were identified in the IDD microarray datasets. GO and KEGG pathway enrichment analyses revealed that the DEmRNAs were predominantly enriched in the PI3K-Akt signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, apoptosis, and cellular response to oxidative stress. Based on SVM screening, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK/FBPase) 2 is the critical metabolic gene with lower expression in IDD, and AC063977.6 is the key lncRNA with lower expression in IDD. The ceRNA hypothesis suggests that AC063977.6, miR-338-3p (high expression), and PFKFB2 are dysregulated as an axis in IDD. Conclusions The results suggest that lncRNA AC063977.6 correlate with PFKFB2, the vital metabolic signature gene, via targeting miR-338-3p during IDD pathogenesis. The current study may shed light on unraveling the pathogenesis of IDD.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 12.2-12
Author(s):  
I. Muller ◽  
M. Verhoeven ◽  
H. Gosselt ◽  
M. Lin ◽  
T. De Jong ◽  
...  

Background:Tocilizumab (TCZ) is a monoclonal antibody that binds to the interleukin 6 receptor (IL-6R), inhibiting IL-6R signal transduction to downstream inflammatory mediators. TCZ has shown to be effective as monotherapy in early rheumatoid arthritis (RA) patients (1). However, approximately one third of patients inadequately respond to therapy and the biological mechanisms underlying lack of efficacy for TCZ remain elusive (1). Here we report gene expression differences, in both whole blood and peripheral blood mononuclear cells (PBMC) RNA samples between early RA patients, categorized by clinical TCZ response (reaching DAS28 < 3.2 at 6 months). These findings could lead to identification of predictive biomarkers for TCZ response and improve RA treatment strategies.Objectives:To identify potential baseline gene expression markers for TCZ response in early RA patients using an RNA-sequencing approach.Methods:Two cohorts of RA patients were included and blood was collected at baseline, before initiating TCZ treatment (8 mg/kg every 4 weeks, intravenously). DAS28-ESR scores were calculated at baseline and clinical response to TCZ was defined as DAS28 < 3.2 at 6 months of treatment. In the first cohort (n=21 patients, previously treated with DMARDs), RNA-sequencing (RNA-seq) was performed on baseline whole blood PAXgene RNA (Illumina TruSeq mRNA Stranded) and differential gene expression (DGE) profiles were measured between responders (n=14) and non-responders (n=7). For external replication, in a second cohort (n=95 therapy-naïve patients receiving TCZ monotherapy), RNA-seq was conducted on baseline PBMC RNA (SMARTer Stranded Total RNA-Seq Kit, Takara Bio) from the 2-year, multicenter, double-blind, placebo-controlled, randomized U-Act-Early trial (ClinicalTrials.gov identifier: NCT01034137) and DGE was analyzed between 84 responders and 11 non-responders.Results:Whole blood DGE analysis showed two significantly higher expressed genes in TCZ non-responders (False Discovery Rate, FDR < 0.05): urotensin 2 (UTS2) and caveolin-1 (CAV1). Subsequent analysis of U-Act-Early PBMC DGE showed nine differentially expressed genes (FDR < 0.05) of which expression in clinical TCZ non-responders was significantly higher for eight genes (MTCOP12, ZNF774, UTS2, SLC4A1, FECH, IFIT1B, AHSP, and SPTB) and significantly lower for one gene (TND2P28M). Both analyses were corrected for baseline DAS28-ESR, age and gender. Expression of UTS2, with a proposed function in regulatory T-cells (2), was significantly higher in TCZ non-responders in both cohorts. Furthermore, gene ontology enrichment analysis revealed no distinct gene ontology or IL-6 related pathway(s) that were significantly different between TCZ-responders and non-responders.Conclusion:Several genes are differentially expressed at baseline between responders and non-responders to TCZ therapy at 6 months. Most notably, UTS2 expression is significantly higher in TCZ non-responders in both whole blood as well as PBMC cohorts. UTS2 could be a promising target for further analyses as a potential predictive biomarker for TCZ response in RA patients in combination with clinical parameters (3).References:[1]Bijlsma JWJ, Welsing PMJ, Woodworth TG, et al. Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet. 2016;388(10042):343-55.[2]Bhairavabhotla R, Kim YC, Glass DD, et al. Transcriptome profiling of human FoxP3+ regulatory T cells. Human Immunology. 2016;77(2):201-13.[3]Gosselt HR, Verhoeven MMA, Bulatovic-Calasan M, et al. Complex machine-learning algorithms and multivariable logistic regression on par in the prediction of insufficient clinical response to methotrexate in rheumatoid arthritis. Journal of Personalized Medicine. 2021;11(1).Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document