A Novel Ferroptosis-related Gene Signature for Overall Survival Prediction in Patients with Bladder cancer

Author(s):  
Liyuan Wu ◽  
Feiya Yang ◽  
Nianzeng Xing

Abstract Background Bladder cancer (BC) is a highly heterogeneous disease, which makes the prognostic prediction challenging. Ferroptosis is related to a variety of biological pathways, including those involved in the metabolism of amino acids, lipids, and iron. However, the prognostic value of ferroptosis-related genes in BC remains to be further elucidated. Methods In this study, the mRNA expression profiles and corresponding clinical data of BC patients were downloaded from public databases. The least absolute shrinkage and selection operator (LASSO) Cox regression model was utilized to construct a multigene signature and validated it. Results Our results showed 12 differentially expressed genes (DEGs) were correlated with overall survival (OS) in the univariate Cox regression analysis (all adjusted P< 0.05). A 9-gene signature was constructed to stratify patients into two risk groups. Patients in the high-risk group showed significantly reduced OS compared with patients in the low-risk group (P < 0.001). The risk score was an independent predictor for OS in multivariate Cox regression analyses (HR> 1, P< 0.01). Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Functional analysis revealed that immune-related pathways were enriched, and immune status were different between two risk groups, especially in humoral immune response process. Conclusion In conclusion, a novel ferroptosis-related gene signature can be used for prognostic prediction in BC. Targeting ferroptosis may be a therapeutic alternative for BC.

2021 ◽  
Author(s):  
Tian Lan ◽  
Die Wu ◽  
Wei Quan ◽  
Donghu Yu ◽  
Sheng Li ◽  
...  

Abstract Background: Glioma is a fatal brain tumor characterized by invasive nature, rapidly proliferation and tumor recurrence. Despite aggressive surgical resection followed by concurrent radiotherapy and chemotherapy, the overall survival (OS) of Glioma patients remains poor. Ferroptosis is a unique modality to regulate programmed cell death and associated with multiple steps of tumorigenesis of a variety of tumors.Methods: In this study, ferroptosis-related genes model was identified by differential analysis and Cox regression analysis. GO, KEGG and GSVA analysis were used to detect the potential biological functions and signaling pathway. The infiltration of immune cells was quantified by Cibersort.Results: The patients’ samples are stratified into two risk groups based on 4-gene signature. High-risk group has poorer overall survival. The results of functional analysis indicated that the extracellular matrix-related biologic functions and pathways were enriched in high-risk group, and that the infiltration of immunocytes is different in two groups.Conclusion: In summary, a novel ferroptosis-related gene signature can be used for prognostic prediction in glioma. The filtered genes related to ferroptosis in clinical could be a potential extra method to assess glioma patients’ prognosis and therapeutic.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Author(s):  
Yingchun Liang ◽  
Fangdie Ye ◽  
Chenyang Xu ◽  
Lujia Zou ◽  
Yun Hu ◽  
...  

Abstract Background: The effective treatment and prognosis prediction of bladder cancer(BLCA) remains a medical problem. Ferroptosis is an iron-dependent form of programmed cell death. Ferroptosis are closely related to tumor occurrence and progression, but the prognostic value of ferroptosis-related genes (FRGs) in BLCA remains to be further clarified. In this study, we identified a FRGs signature with potential prognostic value for patients with BLCA. Methods: The corresponding clinical data and the mRNA expression profile of BLCA patients were downloaded from The Cancer Genome Atlas (TCGA). Univariate Cox regression was used to extract FRGs related to survival time, Cox regression model was applied to construct a multigene signature. Both principal component analysis (PCA) and single-sample gene set enrichment analysis (ssGSEA) were performed for functional annotation. Results: Clinical traits were combined with FRGs, so that 15 prognostic-related FRGs were identified by Cox regression. High expression of CISD1, GCLM, CRYAB, SLC7A11, TFRC, ACACA, ZEB1, SQLE, FADS2, ABCC1, G6PD and PGD are related to poor survival rates of BLCA patients. Multivariate Cox regression constructed a prognostic model with 7 FRGs and divided patients into two risk groups. Compared with the low-risk group, the overall survival(OS) of patients in the high-risk group was significantly lower (P <0.001). In multivariate regression analysis, the risk score was shown to be an independent predictor of OS (HR> 1, P <0.01). ROC curve analysis verified the predictive ability of the model. In addition, the two risk groups displayed different immune statuses in the ssGSEA and different distributed patterns in PCA. Conclusion: Our research suggests that a new gene model related to ferroptosis can be applied for the prognosis prediction of BLCA. Targeting FRGs may be a treatment option for BLCA.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chaocai Zhang ◽  
Minjie Wang ◽  
Fenghu Ji ◽  
Yizhong Peng ◽  
Bo Wang ◽  
...  

Introduction. Glioblastoma (GBM) is one of the most frequent primary intracranial malignancies, with limited treatment options and poor overall survival rates. Alternated glucose metabolism is a key metabolic feature of tumour cells, including GBM cells. However, due to high cellular heterogeneity, accurately predicting the prognosis of GBM patients using a single biomarker is difficult. Therefore, identifying a novel glucose metabolism-related biomarker signature is important and may contribute to accurate prognosis prediction for GBM patients. Methods. In this research, we performed gene set enrichment analysis and profiled four glucose metabolism-related gene sets containing 327 genes related to biological processes. Univariate and multivariate Cox regression analyses were specifically completed to identify genes to build a specific risk signature, and we identified ten mRNAs (B4GALT7, CHST12, G6PC2, GALE, IL13RA1, LDHB, SPAG4, STC1, TGFBI, and TPBG) within the Cox proportional hazards regression model for GBM. Results. Depending on this glucose metabolism-related gene signature, we divided patients into high-risk (with poor outcomes) and low-risk (with satisfactory outcomes) subgroups. The results of the multivariate Cox regression analysis demonstrated that the prognostic potential of this ten-gene signature is independent of clinical variables. Furthermore, we used two other GBM databases (Chinese Glioma Genome Atlas (CGGA) and REMBRANDT) to validate this model. In the functional analysis results, the risk signature was associated with almost every step of cancer progression, such as adhesion, proliferation, angiogenesis, drug resistance, and even an immune-suppressed microenvironment. Moreover, we found that IL31RA expression was significantly different between the high-risk and low-risk subgroups. Conclusion. The 10 glucose metabolism-related gene risk signatures could serve as an independent prognostic factor for GBM patients and might be valuable for the clinical management of GBM patients. The differential gene IL31RA may be a potential treatment target in GBM.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jingchao Liu ◽  
Hong Ma ◽  
Lingfeng Meng ◽  
Xiaodong Liu ◽  
Zhengtong Lv ◽  
...  

Purpose: To identify whether ferroptosis-related genes play predictive roles in bladder cancer patients and to develop a ferroptosis-related gene signature to predict overall survival outcomes.Materials and Methods: We downloaded the mRNA expression files and clinical data of 256 bladder samples (188 bladder tumour and 68 nontumour samples) from the GEO database and 430 bladder samples (411 bladder tumour and 19 nontumour samples) from the TCGA database. A multigene signature based on prognostic ferroptosis-related genes was constructed by least absolute shrinkage and selection operator Cox regression analysis in the GEO cohort. The TCGA cohort was used to validate the ferroptosis-related gene signature. Next, functional enrichment analysis, including both Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses, was performed to elucidate the mechanism underlying the signature. The ssGSEA scores of 16 immune cells and 13 immune-related pathway activities between the high-risk and low-risk groups were also analysed in our study.Results: Thirty-three (67.3%) ferroptosis-related genes were differentially expressed between bladder tumour samples and nontumour samples in the GEO cohort. The intersection of prognostic ferroptosis-related genes and differentially expressed genes identified four prognostic targets, including ALOX5, FANCD2, HMGCR and FADS2. The least absolute shrinkage and selection operator Cox regression successfully built a 4-gene signature: risk score value = esum (each gene’s normalized expression * each gene’s coefficient). Univariate and multivariate Cox regression analyses were performed in both the GEO and TCGA cohorts to test the independent prognostic value of the 4-gene risk signature. Multivariate Cox regression analysis in the GEO cohort identified age (p &lt; 0.001), grade (p = 0.129) and risk score (p = 0.016) as independent prognostic predictors for overall survival. Multivariate Cox regression analysis in the TCGA cohort also identified age (p = 0.002), stage (p &lt; 0.001) and risk score (p = 0.006) as independent prognostic predictors for overall survival. The type II IFN response was determined to be significantly weakened in the high-risk group in both the GEO and TCGA cohorts.Conclusion: We successfully built a ferroptosis-related gene signature of significant predictive value for bladder cancer. These results suggest a novel research direction for targeted therapy of bladder cancer in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zheng Yao ◽  
Song Wen ◽  
Jun Luo ◽  
Weiyuan Hao ◽  
Weiren Liang ◽  
...  

Background. Accurate and effective biomarkers for the prognosis of patients with hepatocellular carcinoma (HCC) are poorly identified. A network-based gene signature may serve as a valuable biomarker to improve the accuracy of risk discrimination in patients. Methods. The expression levels of cancer hallmarks were determined by Cox regression analysis. Various bioinformatic methods, such as GSEA, WGCNA, and LASSO, and statistical approaches were applied to generate an MTORC1 signaling-related gene signature (MSRS). Moreover, a decision tree and nomogram were constructed to aid in the quantification of risk levels for each HCC patient. Results. Active MTORC1 signaling was found to be the most vital predictor of overall survival in HCC patients in the training cohort. MSRS was established and proved to hold the capacity to stratify HCC patients with poor outcomes in two validated datasets. Analysis of the patient MSRS levels and patient survival data suggested that the MSRS can be a valuable risk factor in two validated datasets and the integrated cohort. Finally, we constructed a decision tree which allowed to distinguish subclasses of patients at high risk and a nomogram which could accurately predict the survival of individuals. Conclusions. The present study may contribute to the improvement of current prognostic systems for patients with HCC.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e18033-e18033
Author(s):  
Jun Chen ◽  
Bei Zhang

e18033 Background: Genomic expression profiles have enabled the classification of head and neck squamous cell carcinoma (HNSCC) into molecular sub-types and provide prognostic information, which have implications for the personalized treatment of HNSCC beyond clinical and pathological features. Methods: Gene-expression profiling was identified in TCGA- HNSCC (n = 492) and validated with the Gene Expression Ominibus (GEO) dataset(n = 270) for which RNA sequencing data and clinical covariates were available. A single-sample gene set enrichment analysis (ssGSEA) algorithm were used to quantified the levels of various hallmarks of cancer. And LASSO Cox regression model was used to screen robust prognostic biomarkers to identify the best set of survival-associated gene signatures in HNSCC. Statistical analyses were performed using R version 3.4.4. Results: We identified unfolded protein response as the primary risk factor for survival(cox coefficient = 17.4 [8.4-26.3], P < 0.001)among various hallmarks of cancer in TCGA- HNSCC. And unfolded protein response ssGESA scores were significantly elevated in patients who died during follow up (P = 0.009). Kaplan-Meier analysis showed that patients with low ssGSEA scores of unfolded protein response exhibited better OS (HR = 0.69, P = 0.008). And we established an unfolded protein response-related gene signature based on lasso cox. We then apply the unfolded protein response -related gene signature to classify patients into the high risk group and the low risk group with the cutoff of 0.18. Adjusted for stage,age,gender, our signature was an independent risk factor for overall survival in TCGA cohorts (HR = 0.39 [0.28-0.53],P = < 0.001). In external independent cohorts, similar results were observed. In the validation cohort GEO65858, the patients with high unfolded protein response score showed longer survival (HR = 0.62 [0.38-1.0], P = 0.049). And adjusted for stage,age,HPV state, the multivariate cox regression analysis showed that unfolded protein response-related gene signature exhibited an independent risk prediction for overall survival in 270 patients with HNSCC (HR = 0.57 [0.35-0.94], P = 0.026). Conclusions: By analyzing the gene-expression data with bioinformation approach, we developed and validated a risk prediction model with unfolded protein response -related expression scores in HNSCC, which have the potential to identify patients who could have better overall survival.


2021 ◽  
Vol 12 ◽  
Author(s):  
Susu Zheng ◽  
Xiaoying Xie ◽  
Xinkun Guo ◽  
Yanfang Wu ◽  
Guobin Chen ◽  
...  

Pyroptosis is a novel kind of cellular necrosis and shown to be involved in cancer progression. However, the diverse expression, prognosis and associations with immune status of pyroptosis-related genes in Hepatocellular carcinoma (HCC) have yet to be analyzed. Herein, the expression profiles and corresponding clinical characteristics of HCC samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then a pyroptosis-related gene signature was built by applying the least absolute shrinkage and selection operator (LASSO) Cox regression model from the TCGA cohort, while the GEO datasets were applied for verification. Twenty-four pyroptosis-related genes were found to be differentially expressed between HCC and normal samples. A five pyroptosis-related gene signature (GSDME, CASP8, SCAF11, NOD2, CASP6) was constructed according to LASSO Cox regression model. Patients in the low-risk group had better survival rates than those in the high-risk group. The risk score was proved to be an independent prognostic factor for overall survival (OS). The risk score correlated with immune infiltrations and immunotherapy responses. GSEA indicated that endocytosis, ubiquitin mediated proteolysis and regulation of autophagy were enriched in the high-risk group, while drug metabolism cytochrome P450 and tryptophan metabolism were enriched in the low-risk group. In conclusion, our pyroptosis-related gene signature can be used for survival prediction and may also predict the response of immunotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhen Tan ◽  
Yubin Lei ◽  
Bo Zhang ◽  
Si Shi ◽  
Jiang Liu ◽  
...  

BackgroundPancreatic ductal adenocarcinoma (PDAC) is one of the most invasive solid malignancies. Immunotherapy and targeted therapy confirmed an existing certain curative effect in treating PDAC. The aim of this study was to develop an immune-related molecular marker to enhance the ability to predict Stages III and IV PDAC patients.MethodIn this study, weighted gene co-expression network (WGCNA) analysis and a deconvolution algorithm (CIBERSORT) that evaluated the cellular constituent of immune cells were used to evaluate PDAC expression data from the GEO (Gene Expression Omnibus) datasets, and identify modules related to CD4+ T cells. LASSO Cox regression analysis and Kaplan–Meier curve were applied to select and build prognostic multi-gene signature in TCGA Stages III and IV PDAC patients (N = 126). This was followed by independent Stages III and IV validation of the gene signature in the International Cancer Genome Consortium (ICGC, N = 62) and the Fudan University Shanghai Cancer Center (FUSCC, N = 42) cohort. Inherited germline mutations and tumor immunity exploration were applied to elucidate the molecular mechanisms in PDAC. Univariate and Multivariate Cox regression analyses were applied to verify the independent prognostic factors. Finally, a prognostic nomogram was created according to the TCGA-PDAC dataset.ResultsA four-gene signature comprising NAPSB, ZNF831, CXCL9 and PYHIN1 was established to predict overall survival of PDAC. This signature also robustly predicted survival in two independent validation cohorts. The four-gene signature could divide patients into high and low-risk groups with disparity overall survival verified by a Log-rank test. Expression of four genes positively correlated with immunosuppression activity (PD-L1 and PD1). Immune-related genes nomogram and corresponding calibration curves showed significant performance for predicting 3-year survival in TCGA-PDAC dataset.ConclusionWe constructed a novel four-gene signature to predict the prognosis of Stages III and IV PDAC patients by applying WGCNA and CIBERSORT algorithm scoring to transcriptome data different from traditional methods of filtrating for differential genes in cancer and healthy tissues. The findings may provide reference to predict survival and was beneficial to individualized management for advanced PDAC patients.


2021 ◽  
Author(s):  
Zhen Zhao ◽  
Jianglin Zheng ◽  
Yi Zhang ◽  
Xiaobing Jiang ◽  
Chuansheng Nie ◽  
...  

Abstract Inflammatory response plays a crucial role in the development and progression of gliomas. However, the prognostic value of inflammatory response-related genes has never been comprehensively investigated for glioma. In this study, we identified 39 differentially expressed genes (DEGs) between glioma and normal brain tissue samples, of which 31 inflammatory response-related genes are related to the prognosis of glioma., The 8 optimal inflammatory response-related genes were selected to construct prognostic inflammatory response-related gene signature (IRGS) through the least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis. The effectiveness of the IRGS was verified in the training (TCGA) and validation (CGGA-693 CGGA-325 and Rembrandt) cohorts. The Kaplan-Meier curve revealed a significant difference in the OS between the high- and low-risk groups. The receiver operating characteristic curve (ROC) shows the powerful predictive ability of IRGS. Meanwhile, a nomogram with better accuracy was established to predict overall survival (OS) based on the independent prognostic factors (IRGS, age, WHO grade, and 1p19q codeletion). In addition, patients in the high-risk group had higher immune, stroma, and ESTIMATE scores, lower tumor purity, higher infiltration of immunosuppressive cells, higher expression of immune checkpoints, higher expression of TIDE and Exclusion, and lower expression of MSI Expe Sig. Thus, the patients in the low-risk group had significantly higher respond rate of immune checkpoint inhibitors (ICIs). A novel prognostic signature incorporated 8 inflammatory response-related genes was associated with the prognosis, immune landscape and the immunotherapy response in patients with gliomas. Thus, the signature can be suitable for future clinical application to predict the prognosis of patients with glioma.


Sign in / Sign up

Export Citation Format

Share Document