scholarly journals Analysis of Immune-Related Signatures Related to CD4+ T Cell Infiltration With Gene Co-Expression Network in Pancreatic Adenocarcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhen Tan ◽  
Yubin Lei ◽  
Bo Zhang ◽  
Si Shi ◽  
Jiang Liu ◽  
...  

BackgroundPancreatic ductal adenocarcinoma (PDAC) is one of the most invasive solid malignancies. Immunotherapy and targeted therapy confirmed an existing certain curative effect in treating PDAC. The aim of this study was to develop an immune-related molecular marker to enhance the ability to predict Stages III and IV PDAC patients.MethodIn this study, weighted gene co-expression network (WGCNA) analysis and a deconvolution algorithm (CIBERSORT) that evaluated the cellular constituent of immune cells were used to evaluate PDAC expression data from the GEO (Gene Expression Omnibus) datasets, and identify modules related to CD4+ T cells. LASSO Cox regression analysis and Kaplan–Meier curve were applied to select and build prognostic multi-gene signature in TCGA Stages III and IV PDAC patients (N = 126). This was followed by independent Stages III and IV validation of the gene signature in the International Cancer Genome Consortium (ICGC, N = 62) and the Fudan University Shanghai Cancer Center (FUSCC, N = 42) cohort. Inherited germline mutations and tumor immunity exploration were applied to elucidate the molecular mechanisms in PDAC. Univariate and Multivariate Cox regression analyses were applied to verify the independent prognostic factors. Finally, a prognostic nomogram was created according to the TCGA-PDAC dataset.ResultsA four-gene signature comprising NAPSB, ZNF831, CXCL9 and PYHIN1 was established to predict overall survival of PDAC. This signature also robustly predicted survival in two independent validation cohorts. The four-gene signature could divide patients into high and low-risk groups with disparity overall survival verified by a Log-rank test. Expression of four genes positively correlated with immunosuppression activity (PD-L1 and PD1). Immune-related genes nomogram and corresponding calibration curves showed significant performance for predicting 3-year survival in TCGA-PDAC dataset.ConclusionWe constructed a novel four-gene signature to predict the prognosis of Stages III and IV PDAC patients by applying WGCNA and CIBERSORT algorithm scoring to transcriptome data different from traditional methods of filtrating for differential genes in cancer and healthy tissues. The findings may provide reference to predict survival and was beneficial to individualized management for advanced PDAC patients.

2021 ◽  
Author(s):  
Liyuan Wu ◽  
Feiya Yang ◽  
Nianzeng Xing

Abstract Background Bladder cancer (BC) is a highly heterogeneous disease, which makes the prognostic prediction challenging. Ferroptosis is related to a variety of biological pathways, including those involved in the metabolism of amino acids, lipids, and iron. However, the prognostic value of ferroptosis-related genes in BC remains to be further elucidated. Methods In this study, the mRNA expression profiles and corresponding clinical data of BC patients were downloaded from public databases. The least absolute shrinkage and selection operator (LASSO) Cox regression model was utilized to construct a multigene signature and validated it. Results Our results showed 12 differentially expressed genes (DEGs) were correlated with overall survival (OS) in the univariate Cox regression analysis (all adjusted P< 0.05). A 9-gene signature was constructed to stratify patients into two risk groups. Patients in the high-risk group showed significantly reduced OS compared with patients in the low-risk group (P < 0.001). The risk score was an independent predictor for OS in multivariate Cox regression analyses (HR> 1, P< 0.01). Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Functional analysis revealed that immune-related pathways were enriched, and immune status were different between two risk groups, especially in humoral immune response process. Conclusion In conclusion, a novel ferroptosis-related gene signature can be used for prognostic prediction in BC. Targeting ferroptosis may be a therapeutic alternative for BC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zi-Hao Wang ◽  
Yun-Zheng Zhang ◽  
Yu-Shan Wang ◽  
Xiao-Xin Ma

Abstract Background Endometrial cancer (EC) is one of the three major gynecological malignancies. Numerous biomarkers that may be associated with survival and prognosis have been identified through database mining in previous studies. However, the predictive ability of single-gene biomarkers is not sufficiently specific. Genetic signatures may be an improved option for prediction. This study aimed to explore data from The Cancer Genome Atlas (TCGA) to identify a new genetic signature for predicting the prognosis of EC. Methods mRNA expression profiling was performed in a group of patients with EC (n = 548) from TCGA. Gene set enrichment analysis was performed to identify gene sets that were significantly different between EC tissues and normal tissues. Cox proportional hazards regression models were used to identify genes significantly associated with overall survival. Quantitative real-time-PCR was used to verify the reliability of the expression of selected mRNAs. Subsequent multivariate Cox regression analysis was used to establish a prognostic risk parameter formula. Kaplan–Meier survival estimates and the log‐rank test were used to validate the significance of risk parameters for prognosis prediction. Result Nine genes associated with glycolysis (CLDN9, B4GALT1, GMPPB, B4GALT4, AK4, CHST6, PC, GPC1, and SRD5A3) were found to be significantly related to overall survival. The results of mRNA expression analysis by PCR were consistent with those of bioinformatics analysis. Based on the nine-gene signature, the 548 patients with EC were divided into high/low-risk subgroups. The prognostic ability of the nine-gene signature was not affected by other factors. Conclusion A nine-gene signature associated with cellular glycolysis for predicting the survival of patients with EC was developed. The findings provide insight into the mechanisms of cellular glycolysis and identification of patients with poor prognosis in EC.


2020 ◽  
Author(s):  
Haige Zheng ◽  
Xiangkun Wu ◽  
Huixian Liu ◽  
Yumin Lu ◽  
Hengguo Li

Abstract Background: Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous tumor with high incidence and poor prognosis. Therefore, effective predictive models are needed to evaluate patient outcomes and optimize treatment. Methods: Ten gene microarray datasets were obtained from the gene expression omnibus (GEO) database. Level 3 mRNA expression and clinical data were obtained in The Cancer Genome Atlas (TCGA) database. We identified highly robust differentially-expressed genes (DEGs) between HNSCC and normal tissue in nine GEO and TCGA datasets using Robust Rank Aggregation (RRA) method. Univariate Cox regression analysis and lasso Cox regression analysis were performed to identify DEGs related to the Overall-survival (OS) and to construct a prognostic gene signature. External validation was performed using GSE65858. Moreover, gene set enrichment analyses (GSEA) analysis was used to analyze significantly rich pathways in high-risk and low-risk groups, and tumor immunoassays were used to clarify immune correlation of the prognostic gene. Finally, integrate multiple forecast indicators were used to build a nomogram using the TCGA-HNSCC dataset. Kaplan–Meier analysis, receiver operating characteristic (ROC), a calibration plot, Harrell’s concordance index (C-index), and decision curve analysis (DCA) were used to test the predictive capability of the seven genetic signals and the nomogram. Results: A novel seven-gene signature (including SLURP1, SCARA5, CLDN10, MYH11, CXCL13, HLF, and ITGA3) was established to predict overall survival in HNSCC patients. ROC curve performed well in the training and validation data sets. Kaplan–Meier analysis demonstrated that low-risk groups had a longer survival time. The nomogram containing seven genetic markers and clinical prognostic factors was a good predictor of HNSCC survival and showed a certain net clinical benefit through the DCA curve. Further research demonstrated that the infiltration degree of CD8 + T cells, B cells, neutrophils, and NK cells were significantly lower in the high-risk group.Conclusion: Our analysis established a seven-gene model and nomogram to accurately predict the prognosis status of HNSCC patients, immune relevance was also described, which may provide a new possibility for individual treatment and medical decision-making.


2021 ◽  
Author(s):  
Tian Lan ◽  
Die Wu ◽  
Wei Quan ◽  
Donghu Yu ◽  
Sheng Li ◽  
...  

Abstract Background: Glioma is a fatal brain tumor characterized by invasive nature, rapidly proliferation and tumor recurrence. Despite aggressive surgical resection followed by concurrent radiotherapy and chemotherapy, the overall survival (OS) of Glioma patients remains poor. Ferroptosis is a unique modality to regulate programmed cell death and associated with multiple steps of tumorigenesis of a variety of tumors.Methods: In this study, ferroptosis-related genes model was identified by differential analysis and Cox regression analysis. GO, KEGG and GSVA analysis were used to detect the potential biological functions and signaling pathway. The infiltration of immune cells was quantified by Cibersort.Results: The patients’ samples are stratified into two risk groups based on 4-gene signature. High-risk group has poorer overall survival. The results of functional analysis indicated that the extracellular matrix-related biologic functions and pathways were enriched in high-risk group, and that the infiltration of immunocytes is different in two groups.Conclusion: In summary, a novel ferroptosis-related gene signature can be used for prognostic prediction in glioma. The filtered genes related to ferroptosis in clinical could be a potential extra method to assess glioma patients’ prognosis and therapeutic.


2020 ◽  
Vol 11 ◽  
Author(s):  
Chengcheng Guo ◽  
Dunchen Yao ◽  
Xiaoping Lin ◽  
He Huang ◽  
Ji Zhang ◽  
...  

Background: Medulloblastoma (MB) is one of the most malignant neuroepithelial tumors in the central nervous system. This study aimed to establish an effective prognostic nomogram and risk grouping system for predicting overall survival (OS) of patients with MB.Materials and Methods: The nomogram was constructed based on data from the database of Surveillance, Epidemiology, and End Results (SEER). This database consisted of 2,824 patients with medulloblastoma and was used as the training cohort. The data of another additional 161 patients treated at the Sun Yat-sen University Cancer Center (SYSUCC) were used as the external validation cohort. Cox regression analysis was used to select independent prognostic factors. Concordance index (C-index) and calibration curve were used to predict the prognostic effect of the nomogram for overall survival.Results: In the training cohort, Cox regression analyses showed that the prognostic factors included histopathology, surgery, radiotherapy, chemotherapy, tumor size, dissemination, and age at diagnosis. The internal and external validated C-indexes were 0.681 and 0.644, respectively. Calibration curves showed that the nomogram was able to predict 1-, 3-, and 5-year OS for patients with MB precisely. Using the training cohort, a risk grouping system was built, which could perfectly classify patients into four risk nomogroups with a 5-year survival rate of 83.9%, 76.5%, 64.5%, and 46.8%, respectively.Conclusion: We built and validated a nomogram and risk grouping system that can provide individual prediction of OS and distinguish MB patients from different risk groups. This nomogram and risk grouping system could help clinicians making better treatment plan and prognostic assessment.


2021 ◽  
Author(s):  
Zhaolin Yang ◽  
Jiale Zhou ◽  
Yizheng Xue ◽  
Yu Zhang ◽  
Kaijun Zhou ◽  
...  

Abstract Purpose To develop an immunotype-based prognostic model for predicting the overall survival (OS) of patients with clear cell renal carcinoma (ccRCC). We explored novel immunotypes of patients with ccRCC, particularly those associated with overall survival. A risk-metastasis model was constructed by integrating the immunotypes with immune genes and used to test the accuracy of the immunotype model. Patients and Methods Patient cohort data were obtained from The Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) database, Renji database, and Surveillance, Epidemiology, and End Results (SEER) database. We employed the R software to select 3 immune cells and construct an immunotype-based prediction model. Immune genes selected using random Forest Algorithm were validated by immunohistochemistry (IHC). The H&L risk-metastasis model was constructed to assess the accuracy of the immunotype model through Multivariate COX regression analysis. Result Patients with ccRCC were categorized into immunotype H subgroup and immunotype L subgroup based on the overall survival rates. The immunotypes were found to be the independent prognostic index for ccRCC prognosis. As such, we constructed a new immunotypes-based SSIGN model. Three immune genes associated with difference between immunotype H and L were identified. An H&L risk-metastasis model was constructed to evaluate the accuracy of the immunotype model. Compared to the W-Risk-metastasis model which did not incorporate immunotypes, the H&L risk-metastasis model was more precise in predicting the survival of ccRCC patients. Conclusion The established immunotype model can effectively predict the survival of ccRCC patients. Except for mast cells, T cells and macrophages are positively associated with the overall survival of patients. The three immune genes identified, herein, can predict the survival rate of ccRCC patients, and expression of these immune genes is strongly linked to poor survival. The new SSIGN model provides an accurate tool for predicting the survival of ccRCC patients. H&L risk-metastasis model can effectively predict the risk of tumor metastasis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11273
Author(s):  
Lei Yang ◽  
Weilong Yin ◽  
Xuechen Liu ◽  
Fangcun Li ◽  
Li Ma ◽  
...  

Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zheng Yao ◽  
Song Wen ◽  
Jun Luo ◽  
Weiyuan Hao ◽  
Weiren Liang ◽  
...  

Background. Accurate and effective biomarkers for the prognosis of patients with hepatocellular carcinoma (HCC) are poorly identified. A network-based gene signature may serve as a valuable biomarker to improve the accuracy of risk discrimination in patients. Methods. The expression levels of cancer hallmarks were determined by Cox regression analysis. Various bioinformatic methods, such as GSEA, WGCNA, and LASSO, and statistical approaches were applied to generate an MTORC1 signaling-related gene signature (MSRS). Moreover, a decision tree and nomogram were constructed to aid in the quantification of risk levels for each HCC patient. Results. Active MTORC1 signaling was found to be the most vital predictor of overall survival in HCC patients in the training cohort. MSRS was established and proved to hold the capacity to stratify HCC patients with poor outcomes in two validated datasets. Analysis of the patient MSRS levels and patient survival data suggested that the MSRS can be a valuable risk factor in two validated datasets and the integrated cohort. Finally, we constructed a decision tree which allowed to distinguish subclasses of patients at high risk and a nomogram which could accurately predict the survival of individuals. Conclusions. The present study may contribute to the improvement of current prognostic systems for patients with HCC.


2021 ◽  
Author(s):  
Chao Zhang ◽  
Haixiao Wu ◽  
Guijun Xu ◽  
Wenjuan Ma ◽  
Lisha Qi ◽  
...  

Abstract Background: Osteosarcoma is the most common primary malignant bone tumor. The current study was conducted to describe the general condition of patients with primary osteosarcoma in a single cancer center in Tianjin, China and to investigate the associated factors in osteosarcoma patients with lung metastasis. Methods: From February 2009 to October 2020, patients from Tianjin Medical University Cancer Institute and Hospital, China were retrospectively analyzed. The Kaplan–Meier method was used to evaluate the overall survival of osteosarcoma patients. Prognostic factors of patients with osteosarcoma were identified by the Cox proportional hazard regression analysis. Risk factor of lung metastasis in osteosarcoma were investigated by the logistic regression model. Results: A total of 203 patients were involved and 150 patients were successfully followed up for survival status. The 5-year survival rate of osteo-sarcoma patients was 70.0%. Surgery, bone and lung metastasis were the significant prognostic factors in multivariable Cox regression analysis. Twenty-one (10.3%) patients showed lung metastasis at the diagnosis of osteosarcoma and 67 (33%) lung metastases during the later course. T3 stage (OR=11.415, 95%CI 1.362-95.677, P=0.025) and synchronous bone metastasis (OR=6.437, 95%CI 1.69-24.51, P=0.006) were risk factors of synchronous lung metastasis occurrence. Good necrosis (≥90%, OR=0.097, 95%CI 0.028-0.332, P=0.000) and elevated Ki-67 (≥50%, OR=4.529, 95%CI 1.241-16.524, P=0.022) were proved to be significantly associated with metachronous lung metastasis occurrence. Conclusion: The overall survival, prognostic factors and risk factors for lung metastasis in this single center provided insight about osteosarcoma management.


Sign in / Sign up

Export Citation Format

Share Document