The Application of CRISPR/Cas9 System in Cervical Precancerous Lesions

2020 ◽  
Author(s):  
Chun Gao ◽  
Ping Wu ◽  
Lan Yu ◽  
Liting Liu ◽  
Hong Liu ◽  
...  

Abstract Background : The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is becoming a promising gene therapy method. Herein, we evaluated the therapeutic effect of CRISPR/Cas9 system in cervical carcinogenesis, especially cervical precancerous lesions. Methods : In cervical cancer/pre-cancer cell lines, we transfected the CRISPR/Cas9, transcription activator–like effector nuclease (TALEN), and zinc finger nuclease (ZFN) plasmids, respectively. We used the cell apoptosis, cell viability, and colony formation assays to examine the efficiency and specificity of inhibition of cell apoptosis and growth between the different gene editing tools. Western blotting was used to estimate the related protein expression. We used xenograft formation assays to examine the ability of inhibition of cell growth in vivo. In the K14-HPV16 transgenic mice model of HPV-driven cervical carcinogenesis, we investigated the therapeutic effect by vaginal administration. Results : Compared to ZFN and TALEN, CRISPR/Cas9 has shown comparable efficiency and specificity of inhibition of cell apoptosis and growth in cervical cancer cell lines, which seem to be more pronounced in the S12 cell line derived from the low-grade cervical lesion. In xenograft formation assays, CRISPR/Cas9 could inhibit tumor formation in vivo and affects the expression of the corresponding protein. In the K14-HPV16 transgenic mice, CRISPR/Cas9 treatment caused mutations of the E7 gene and restored the expression of RB, E2F1, and CDK2, thereby reversing the cervical carcinogenesis phenotype. Conclusion : In this study, we have demonstrated that CRISPR/Cas9 targeting HPV16 E7 could effectively reduce the expression of E7 protein in vitro. Additionally, it could revert the HPV-related cervical carcinogenesis in K14-HPV16 transgenic mice, which has shown great potential in clinical treatment.

Author(s):  
Chun Gao ◽  
Ping Wu ◽  
Lan Yu ◽  
Liting Liu ◽  
Hong Liu ◽  
...  

AbstractIntegration of high-risk HPV genomes into cellular chromatin has been confirmed to promote cervical carcinogenesis, with HPV16 being the most prevalent high-risk type. Herein, we evaluated the therapeutic effect of the CRISPR/Cas9 system in cervical carcinogenesis, especially for cervical precancerous lesions. In cervical cancer/pre-cancer cell lines, we transfected the HPV16 E7 targeted CRISPR/Cas9, TALEN, ZFN plasmids, respectively. Compared to previous established ZFN and TALEN systems, CRISPR/Cas9 has shown comparable efficiency and specificity in inhibiting cell growth and colony formation and inducing apoptosis in cervical cancer/pre-cancer cell lines, which seemed to be more pronounced in the S12 cell line derived from the low-grade cervical lesion. Furthermore, in xenograft formation assays, CRISPR/Cas9 inhibited tumor formation of the S12 cell line in vivo and affected the corresponding protein expression. In the K14-HPV16 transgenic mice model of HPV-driven spontaneous cervical carcinogenesis, cervical application of CRISPR/Cas9 treatment caused mutations of the E7 gene and restored the expression of RB, E2F1, and CDK2, thereby reversing the cervical carcinogenesis phenotype. In this study, we have demonstrated that CRISPR/Cas9 targeting HPV16 E7 could effectively revert the HPV-related cervical carcinogenesis in vitro, as well as in K14-HPV16 transgenic mice, which has shown great potential in clinical treatment for cervical precancerous lesions.


2017 ◽  
Vol 27 (7) ◽  
pp. 1306-1317
Author(s):  
Yen-Yun Wang ◽  
Pei-Wen Hsieh ◽  
Yuk-Kwan Chen ◽  
Stephen Chu-Sung Hu ◽  
Ya-Ling Hsu ◽  
...  

ObjectiveThe β-nitrostyrene family has been reported to possess anticancer properties. However, the anticancer activity of β-nitrostyrenes on cervical cancer cells and the underlying mechanisms involved remain unexplored. In this study, a β-nitrostyrene derivative CYT-Rx20 (3′-hydroxy-4′-methoxy-β-methyl-β-nitrostyrene) was synthesized, and its anticancer activity on cervical cancer cells and the mechanisms involved were investigated.MethodsThe effect of CYT-Rx20 on human cervical cancer cell growth was evaluated using cell viability assay. Reactive oxygen species (ROS) generation and annexin V staining were detected by flow cytometry. The protein expression levels of cleaved caspase-3, cleaved caspase-9, cleaved poly (ADPribose) polymerase, γH2AX, β-catenin, Vimentin, and Twist were measured by Western blotting. DNA double-strand breaks were determined by γ-H2AX foci formation and neutral comet assay. Migration assay was used to determine cancer cell migration. Nude mice xenograft was used to investigate the antitumor effects of CYT-Rx20 in vivo.ResultsCYT-Rx20 induced cytotoxicity in cervical cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited cervical cancer cell migration by regulating the expression of epithelial-to-mesenchymal transition markers. In nude mice, CYT-Rx20 inhibited cervical tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of mesenchymal markers β-catenin and Twist.ConclusionsCYT-Rx20 inhibits cervical cancer cells in vitro and in vivo and has the potential to be further developed into an anti-cervical cancer drug clinically.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Hao ◽  
Ming Ye ◽  
Xiaona Chen ◽  
Hongli Zhao ◽  
Ayshamgul Hasim ◽  
...  

Abstract Background To validate markers for cervical carcinoma (CC) and precancerous lesions related with HPV infections. Methods Three different cervical cancer cell lines C-33A, SiHa and Caski were used for secretome profiling by label-free quantitative proteomics. Cervical exfoliated cells and matching serum samples were collected from 284 patients with normal control (n = 75, 26.41 %), precancerous lesions (n = 88, 30.99 %) and early stage cervical squamous carcinoma (n = 121, 42.61 %). HPV subtyping and quantification was performed by PCR and hybridization. 20 candidate proteins identified in previous screening studies (tissue, plasma, cells) were quantified by ELISA. Finally, highly quantitative parallel reaction monitoring mass spectrometry was used to assess the specificities and sensitivities of candidate serum markers. Results While CC was found to be associated with high-risk HPV subtypes, serum antibodies for high risk HPV were not significantly related to the progression of cervical cancer. Significant differences between patient groups were detected for the four proteins CLU, APOA4, APOE and MLH3, but none would allow clinical application due to insufficient sensitivity and specificity and large variability. Subsequent proteomic secretome analysis of cervical cancer cell lines identified a set of 729 common proteins. Cross referencing this dataset with ELISA measurements revealed six candidate proteins of which two, FBLN1 and ANT3, showed co-occurrence with HPV infection (75.7 % and 85 %, respectively) and had promising diagnostic ability in terms of sensitivity and specificity. After the loss of E6/E7 by using CRISPR/Cas9 gene editing, the content of ANT3 and FBLN1 in KoE6/E7 SiHa were downregulated, which indicated the expression of ANT3 and FBLN1 in cervical cancer may be affected by HPV infection. Conclusions FBLN1 and ANT3 might be potential tumor- and HPV-associated serum markers.


Author(s):  
Zongjuan Li ◽  
Yang Zhang ◽  
Silei Sui ◽  
Yijun Hua ◽  
Anshi Zhao ◽  
...  

Abstract Background Radiotherapy is regarded as a milestone for the cure of cervical cancer. However, clinical outcome heavily be hindered by radioresistance. So, exploring the underlying mechanism of radioresistance, and find potential target, well deserve fully emphasis. Methods In this study, we developed two novel radiation resistance cervical cancer cell lines, which could mimic clinical radioresistance. In order to find new potential targets, RNA-Seq, database analysis, streptavidin-agarose and LC/MS were used. Pull-down, luciferase and rescue assays were conducted to explore the regulatory mechanisms. To further evaluate the correlation between therapeutic responses and HMGB3/hTERT expression, 172 cervical cancer patients were recruited. Results Knockdown of HMGB3 significantly inhibit the DNA damage repair and induced more γH2AX foci, leading to enhanced chemo- and radio-sensitivity in vitro and in vivo, whereas HMGB3 overexpression has the opposite effects. HMGB3 promotes cell growth and radioresistance by transcriptionally up-regulating hTERT via the specifical binding of HMGB3 at the hTERT promoter region from − 902 to − 321. HMGB3 knockdown-mediated radiosensitization could be reversed by the overexpressed hTERT in both cervical cancer cell lines and xenograft tumor mouse model. Furthermore, clinical data from 172 cervical cancer patients proved that there was a positive correlation between HMGB3 and hTERT expression, and high expression of HMGB3/hTERT predicted poor response to radiotherapy, worse TNM stages and shorter survival time. Conclusion Here, we have identified HMGB3/hTERT signaling axis as a new target for cervical cancer radioresistance. Our results provide new insights into the mechanism of cervical cancer radioresistance and indicate that targeting the HMGB3/hTERT signaling axis may benefit cervical cancer patients.


2016 ◽  
Vol 94 (5) ◽  
pp. 526-533 ◽  
Author(s):  
Yan Zhao ◽  
Xinyu Wang ◽  
Lei Li ◽  
Changzhong Li

The clinical management of cervical cancer remains a challenge and the development of new treatment strategies merits attention. However, the discovery and development of novel compounds can be a long and labourious process. Drug repositioning may circumvent this process and facilitate the rapid translation of hypothesis-driven science into the clinics. In this work, we show that a FDA-approved antibiotic, doxycycline, effectively targets human papillomavirus (HPV) positive and negative cervical cancer cells in vitro and in vivo. Doxycycline significantly inhibits proliferation of a panel of cervical cancer cell lines. It also induces apoptosis of cervical cancer cells in a time- and dose-dependent manner. In addition, the apoptosis induced by doxycycline is through caspase-dependent pathway. Mechanism studies demonstrate that doxycycline affects oxygen consumption rate, glycolysis, and reduces ATP levels in cervical cancer cells. In HeLa xenograft mouse model, doxycycline significantly inhibits growth of tumour. Our in vitro and in vivo data clearly demonstrate the inhibitory effects of doxycycline on the growth and survival of cervical cancer cells. Our work provides the evidence that doxycycline can be repurposed for the treatment of cervical cancer and targeting energy metabolism may represent a potential therapeutic strategy for cervical cancer.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Georgia Kontostathi ◽  
Jerome Zoidakis ◽  
Manousos Makridakis ◽  
Vasiliki Lygirou ◽  
George Mermelekas ◽  
...  

Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV−), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.


Author(s):  
Kalliopi Pappa ◽  
Polyxeni Christou ◽  
Amarildo Xholi ◽  
George Mermelekas ◽  
Georgia Kontostathi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document