scholarly journals Comprehensive Analysis of Lysine Crotonylation Modification in Patients with Chronic Renal Failure

Author(s):  
Jiahuang Huang ◽  
Donge Tang ◽  
Fengping Zheng ◽  
Huixuan Xu ◽  
Yong Dai

Abstract Background: Post-translational modifications (PTMs) are at the heart of many cellular signaling events, which changes the function of protein. Crotonylation, one of the most important and common PTMs, plays a key role in the regulation of various biological processes. However, no study has evaluated the role of lysine crotonylation modification and chronic renal failure patients. Methods: Here, we comparatively evaluated the crotonylation proteome of normal controls and chronic renal failure patients using liquid chromatography tandem mass spectrometry (LC-MS/MS) coupled with highly sensitive immune-affinity purification.Results: A total of 1109 lysine modification sites were identified, of which 772 sites were up-regulated and 69 sites were down-regulated; this suggests that crotonylation modification maintains high levels in the patients’ kidneys with chronic renal failure. Gene ontology enrichment analysis showed that the crotonylated proteins were significantly enriched in the platelet alpha granule lumen, platelet degradulation, and cell adhesion molecule binding. In addition, KEGG-based gene and genomic functional enrichment analysis in Kyoto encyclopedia showed that battoacyl protein was enriched in CD36, which has an important relationship with renal failure.Conclusion: This is the first report on the global crotonylation proteome of chronic renal failure patients. crotonylation of histone and non-histone may play an important role in delaying the continuous deterioration of renal function in patients with chronic renal failure.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiahuang Huang ◽  
Donge Tang ◽  
Fengping Zheng ◽  
Huixuan Xu ◽  
Yong Dai

Abstract Background Post-translational modifications (PTMs) are at the heart of many cellular signaling events, which changes the function of protein. Crotonylation, one of the most important and common PTMs, plays a crucial role in the regulation of various biological processes. However, no study has evaluated the role of lysine crotonylation modification in chronic renal failure (CRF) patients. Methods Here, we comparatively evaluated the crotonylation proteome of normal controls and chronic renal failure patients using liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with highly sensitive immune-affinity purification. Results A total of 1109 lysine modification sites were identified, of which 772 sites were up-regulated and 69 sites were down-regulated. This suggested that crotonylation modification maintains high levels in the patients with chronic renal failure. Gene ontology(GO) enrichment analysis showed that the crotonylated proteins were significantly enriched in the platelet alpha granule lumen, platelet degradulation, and cell adhesion molecule binding. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG)-based functional enrichment analysis in the Kyoto encyclopedia showed that crotonylated protein was enriched in CD36, which is closely linked to renal failure. Conclusions This is the first report of the global crotonylation proteome in chronic renal failure patients. Crotonylation of histone and non-histone may play important roles in delaying the continuous deterioration of renal function in patients with chronic renal failure.


2021 ◽  
Author(s):  
Yanchun Wang ◽  
Zheng Wei ◽  
Junping Zhang ◽  
Xuemei Wang ◽  
Xiaohua Li

Abstract Background: Epithelial ovarian cancer (EOC) is a disease with high morbidity and mortality worldwide, which is seriously harmful to female health. LncRNA has an important relationship with the occurrence and development of tumors. Hence, the investigation of the underlying mechanism between LncRNA and EOC is of great importance.Results: In this study, we found that LINC01503 was highly expressed in EOC with a poor prognosis based on microarray datasets GSE119056 and GSE135886 obtained from Gene Expression Omnibus (GEO) database, and this result was verified by RT-qPCR. The database lncBase Predicted v.2 and starBase v2.0 were used to predict the targeted relationship of lncRNA-miRNA-mRNA, then the ceRNA network was established by Cytoscape software. Following, the expression and overall survival (OS) analysis of key lncRNAs were analyzed by GEPIA and Kaplan-Meier plotter database. Gene Ontology (GO) functional enrichment analysis was performed by DAVID database and enriched two cancer related biological processes (BP) that response to endoplasmic reticulum stress and IRE1-mediated unfolded protein. Moreover, we verified that LINC01503 was an oncogene regulated by C-terminal binding protein 1 (CTBP1) to promote cell proliferation, migration and inhibited cell apoptosis in ovarian cancer. Conclusion: In conclusion, these results identified LINC01503 as a potential gene for EOC diagnosis and prognosis.


2019 ◽  
Vol 14 (7) ◽  
pp. 591-601 ◽  
Author(s):  
Aravind K. Konda ◽  
Parasappa R. Sabale ◽  
Khela R. Soren ◽  
Shanmugavadivel P. Subramaniam ◽  
Pallavi Singh ◽  
...  

Background: Chickpea is a nutritional rich premier pulse crop but its production encounters setbacks due to various stresses and understanding of molecular mechanisms can be ascribed foremost importance. Objective: The investigation was carried out to identify the differentially expressed WRKY TFs in chickpea in response to herbicide stress and decipher their interacting partners. Methods: For this purpose, transcriptome wide identification of WRKY TFs in chickpea was done. Behavior of the differentially expressed TFs was compared between other stress conditions. Orthology based cofunctional gene networks were derived from Arabidopsis. Gene ontology and functional enrichment analysis was performed using Blast2GO and STRING software. Gene Coexpression Network (GCN) was constructed in chickpea using publicly available transcriptome data. Expression pattern of the identified gene network was studied in chickpea-Fusarium interactions. Results: A unique WRKY TF (Ca_08086) was found to be significantly (q value = 0.02) upregulated not only under herbicide stress but also in other stresses. Co-functional network of 14 genes, namely Ca_08086, Ca_19657, Ca_01317, Ca_20172, Ca_12226, Ca_15326, Ca_04218, Ca_07256, Ca_14620, Ca_12474, Ca_11595, Ca_15291, Ca_11762 and Ca_03543 were identified. GCN revealed 95 hub genes based on the significant probability scores. Functional annotation indicated role in callose deposition and response to chitin. Interestingly, contrasting expression pattern of the 14 network genes was observed in wilt resistant and susceptible chickpea genotypes, infected with Fusarium. Conclusion: This is the first report of identification of a multi-stress responsive WRKY TF and its associated GCN in chickpea.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenyang Liao ◽  
Xunxiao Zhang ◽  
Shengcheng Zhang ◽  
Zhicong Lin ◽  
Xingtan Zhang ◽  
...  

Abstract Background Structural variations (SVs) are a type of mutations that have not been widely detected in plant genomes and studies in animals have shown their role in the process of domestication. An in-depth study of SVs will help us to further understand the impact of SVs on the phenotype and environmental adaptability during papaya domestication and provide genomic resources for the development of molecular markers. Results We detected a total of 8083 SVs, including 5260 deletions, 552 tandem duplications and 2271 insertions with deletion being the predominant, indicating the universality of deletion in the evolution of papaya genome. The distribution of these SVs is non-random in each chromosome. A total of 1794 genes overlaps with SV, of which 1350 genes are expressed in at least one tissue. The weighted correlation network analysis (WGCNA) of these expressed genes reveals co-expression relationship between SVs-genes and different tissues, and functional enrichment analysis shows their role in biological growth and environmental responses. We also identified some domesticated SVs genes related to environmental adaptability, sexual reproduction, and important agronomic traits during the domestication of papaya. Analysis of artificially selected copy number variant genes (CNV-genes) also revealed genes associated with plant growth and environmental stress. Conclusions SVs played an indispensable role in the process of papaya domestication, especially in the reproduction traits of hermaphrodite plants. The detection of genome-wide SVs and CNV-genes between cultivated gynodioecious populations and wild dioecious populations provides a reference for further understanding of the evolution process from male to hermaphrodite in papaya.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 672-688
Author(s):  
Yanbo Dong ◽  
Siyu Lu ◽  
Zhenxiao Wang ◽  
Liangfa Liu

AbstractThe chaperonin-containing T-complex protein 1 (CCT) subunits participate in diverse diseases. However, little is known about their expression and prognostic values in human head and neck squamous cancer (HNSC). This article aims to evaluate the effects of CCT subunits regarding their prognostic values for HNSC. We mined the transcriptional and survival data of CCTs in HNSC patients from online databases. A protein–protein interaction network was constructed and a functional enrichment analysis of target genes was performed. We observed that the mRNA expression levels of CCT1/2/3/4/5/6/7/8 were higher in HNSC tissues than in normal tissues. Survival analysis revealed that the high mRNA transcriptional levels of CCT3/4/5/6/7/8 were associated with a low overall survival. The expression levels of CCT4/7 were correlated with advanced tumor stage. And the overexpression of CCT4 was associated with higher N stage of patients. Validation of CCTs’ differential expression and prognostic values was achieved by the Human Protein Atlas and GEO datasets. Mechanistic exploration of CCT subunits by the functional enrichment analysis suggests that these genes may influence the HNSC prognosis by regulating PI3K-Akt and other pathways. This study implies that CCT3/4/6/7/8 are promising biomarkers for the prognosis of HNSC.


2021 ◽  
Vol 28 (1) ◽  
pp. 20-33
Author(s):  
Lydia-Eirini Giannakou ◽  
Athanasios-Stefanos Giannopoulos ◽  
Chrissi Hatzoglou ◽  
Konstantinos I. Gourgoulianis ◽  
Erasmia Rouka ◽  
...  

Haemophilus influenzae (Hi), Moraxella catarrhalis (MorCa) and Pseudomonas aeruginosa (Psa) are three of the most common gram-negative bacteria responsible for human respiratory diseases. In this study, we aimed to identify, using the functional enrichment analysis (FEA), the human gene interaction network with the aforementioned bacteria in order to elucidate the full spectrum of induced pathogenicity. The Human Pathogen Interaction Database (HPIDB 3.0) was used to identify the human proteins that interact with the three pathogens. FEA was performed via the ToppFun tool of the ToppGene Suite and the GeneCodis database so as to identify enriched gene ontologies (GO) of biological processes (BP), cellular components (CC) and diseases. In total, 11 human proteins were found to interact with the bacterial pathogens. FEA of BP GOs revealed associations with mitochondrial membrane permeability relative to apoptotic pathways. FEA of CC GOs revealed associations with focal adhesion, cell junctions and exosomes. The most significantly enriched annotations in diseases and pathways were lung adenocarcinoma and cell cycle, respectively. Our results suggest that the Hi, MorCa and Psa pathogens could be related to the pathogenesis and/or progression of lung adenocarcinoma via the targeting of the epithelial cellular junctions and the subsequent deregulation of the cell adhesion and apoptotic pathways. These hypotheses should be experimentally validated.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhiyong Liu ◽  
Kai Dang ◽  
Cunzhi Li ◽  
Junhong Gao ◽  
Hong Wang ◽  
...  

Abstract Hexanitrohexaazaisowurtzitane (CL-20) is a compound with a polycyclic cage and an N-nitro group that has been shown to play an unfavorable role in environmental fate, biosafety, and physical health. The aim of this study was to isolate the microbial community and to identify a single microbial strain that can degrade CL-20 with desirable efficiency. Metagenomic sequencing methods were performed to investigate the dynamic changes in the composition of the community diversity. The most varied genus among the microbial community was Pseudomonas, which increased from 1.46% to 44.63% during the period of incubation (MC0–MC4). Furthermore, the new strain was isolated and identified from the activated sludge by bacterial morphological and 16s rRNA sequencing analyses. The CL-20 concentrations decreased by 75.21 μg/mL and 74.02 μg/mL in 48 h by MC4 and Pseudomonas sp. ZyL-01, respectively. Moreover, ZyL-01 could decompose 98% CL-20 of the real effluent in 14 day’s incubation with the glucose as carbon source. Finally, a draft genome sequence was obtained to predict possible degrading enzymes involved in the biodegradation of CL-20. Specifically, 330 genes that are involved in energy production and conversion were annotated by Gene Ontology functional enrichment analysis, and some of these candidates may encode enzymes that are responsible for CL-20 degradation. In summary, our studies indicate that microbes might be a valuable biological resource for the treatment of environmental contamination caused by CL-20 and that Pseudomonas sp. ZyL-01 might be a promising candidate for eradicating CL-20 to achieve a more biosafe environment and improve public health.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuntao Shi ◽  
Yingying Zhuang ◽  
Jialing Zhang ◽  
Mengxue Chen ◽  
Shangnong Wu

Objective. Although noncoding RNAs, especially the microRNAs, have been found to play key roles in CRC development in intestinal tissue, the specific mechanism of these microRNAs has not been fully understood. Methods. GEO and TCGA database were used to explore the microRNA expression profiles of normal mucosa, adenoma, and carcinoma. And the differential expression genes were selected. Computationally, we built the SVM model and multivariable Cox regression model to evaluate the performance of tumorigenic microRNAs in discriminating the adenomas from normal tissues and risk prediction. Results. In this study, we identified 20 miRNA biomarkers dysregulated in the colon adenomas. The functional enrichment analysis showed that MAPK activity and MAPK cascade were highly enriched by these tumorigenic microRNAs. We also investigated the target genes of the tumorigenic microRNAs. Eleven genes, including PIGF, TPI1, KLF4, RARS, PCBP2, EIF5A, HK2, RAVER2, HMGN1, MAPK6, and NDUFA2, were identified to be frequently targeted by the tumorigenic microRNAs. The high AUC value and distinct overall survival rates between the two risk groups suggested that these tumorigenic microRNAs had the potential of diagnostic and prognostic value in CRC. Conclusions. The present study revealed possible mechanisms and pathways that may contribute to tumorigenesis of CRC, which could not only be used as CRC early detection biomarkers, but also be useful for tumorigenesis mechanism studies.


Sign in / Sign up

Export Citation Format

Share Document