scholarly journals New ternary water-soluble support from self-assembly of β-cyclodextrin-ionic liquid and an anionic polymer for a dialysis device

Author(s):  
Asmaa Bouyahya ◽  
Berthe-Sandra Sembo-Backonly ◽  
Audrey Favrelle-Huret ◽  
Sébastien Balieu ◽  
Frédéric Guillen ◽  
...  

Abstract We developed a new hybrid material resulting from an innovative supramolecular tripartite association between an ionic liquid covalently immobilized on primary β-cyclodextrins rim and an anionic water-soluble polymer. Two hydrophilic ternary complexes based on native and permethylated β-cyclodextrins substituted with an ionic liquid and immobilized on poly(styrene sulfonate) (CD-IL+PSS− and CD(OMe)IL+PSS−) were obtained by simple dialysis with a cyclodextrin maximal grafting rate of 25% and 20% on the polymer, respectively. These polyelectrolytes are based on electrostatic interactions between the opposite charges of the imidazolium cation of the ionic liquid and the poly(styrene sulfonate) anion. The inclusion properties of the free cavities of the cyclodextrins and the synergic effect of the polymeric matrix were studied with three reference guests such as phenolphthalein, p-nitrophenol, and 2-anilinonaphthalene-6-sulfonic acid using UV-visible, fluorescent, and NMR spectroscopies. The support has been applied successfully in dialysis device to extract and concentrated aromatic model molecule. This simple and flexible synthetic strategy opens the way to new hybrid materials useful for fast and low-cost ecofriendly extraction techniques relevant for green analytical chemistry.

2011 ◽  
Vol 236-238 ◽  
pp. 1103-1106 ◽  
Author(s):  
Yuan Feng Pan ◽  
Hui Ning Xiao

A thermal-responsive polymer was prepared by partially acetalyzing poly(vinyl alcohol) (PVA). The completely reversible polymer aggregation and dissolution occur above and below a low critical solution temperature (LCST) for the aqueous solution of the modified PVA. The partially acetalized PVA (APVA) with higher molecular weight and higher degree of acetalysis exhibited a lower LCST transition and was used as an anionic polymer for polymer complexation. Water-soluble polymer, cationic polyhexamethylene guanidine hydrochloride (CPHGH) with antimicrobial property, was also prepared. In conjunction with APVA, CPHGH created the unique antimicrobial polymer multilayers on the surfaces of rayon fibres via layer by layer (LbL) assembly. AFM images revealed that the particles generated by multilayers became larger after the material was treated at 60°C; while the roughness of the surfaces was increased as the layer number increased and then decreased. Moreover, antimicrobial tests also demonstrated that the rayon fiber assembled with (CPHGH/APVA) multilayers exhibited higher antimicrobial activity against E. coli and s. aureus.


Author(s):  
Asmaa Bouyahya ◽  
Berthe-Sandra Sembo-Backonly ◽  
Audrey Favrelle-Huret ◽  
Sébastien Balieu ◽  
Frédéric Guillen ◽  
...  

2019 ◽  
Vol 4 (3) ◽  
pp. 580-585 ◽  
Author(s):  
Bineh G. Ndefru ◽  
Bryan S. Ringstrand ◽  
Sokhna I.-Y. Diouf ◽  
Sönke Seifert ◽  
Juan H. Leal ◽  
...  

Combining bottom-up self-assembly with top-down 3D photoprinting affords a low cost approach for the introduction of nanoscale features into a build with low resolution features.


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


2005 ◽  
Vol 58 (6) ◽  
pp. 442 ◽  
Author(s):  
John F. Quinn ◽  
Frank Caruso

Multilayer thin films were prepared based on hydrogen bonding between poly(N-isopropylacrylamide) (PNiPAAm), and poly(styrene sulfonate-co-maleic acid) (PSSMA). Since PSSMA is capable of associating with other polymers through both hydrogen bonding and electrostatic interactions, multilayer assemblies incorporating PSSMA, PNiPAAm, and intercalated poly(allylamine hydrochloride) (PAH) layers were also prepared. Intercalated PAH layers were included to improve the pH stability of the film by introducing electrostatic linkages into the assembly. Film construction was studied as a function of pH of the deposition solution and the number of inserted PAH layers. Film morphology varied significantly with incorporation of PAH into the film. It was also demonstrated that by intercalating several PAH layers within the PNiPAAm/PSSMA assembly, the pH stability of the films at pH 5.8 could be substantially improved.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7097
Author(s):  
Masahito Hara ◽  
Yoshinori Sumita ◽  
Yukinobu Kodama ◽  
Mayumi Iwatake ◽  
Hideyuki Yamamoto ◽  
...  

We have developed nanoballs, a biocompatible self-assembly nano-vector based on electrostatic interactions that arrange anionic macromolecules to polymeric nanomaterials to create nucleic acid carriers. Nanoballs exhibit low cytotoxicity and high transfection efficiently in vivo. This study investigated whether a gene-activated matrix (GAM) composed of nanoballs containing plasmid (p) DNAs encoding bone morphogenetic protein 4 (pBMP4) could promote bone augmentation with a small amount of DNA compared to that composed of naked pDNAs. We prepared nanoballs (BMP4-nanoballs) constructed with pBMP4 and dendrigraft poly-L-lysine (DGL, a cationic polymer) coated by γ-polyglutamic acid (γ-PGA; an anionic polymer), and determined their biological functions in vitro and in vivo. Next, GAMs were manufactured by mixing nanoballs with 2% atelocollagen and β-tricalcium phosphate (β-TCP) granules and lyophilizing them for bone augmentation. The GAMs were then transplanted to rat cranial bone surfaces under the periosteum. From the initial stage, infiltrated macrophages and mesenchymal progenitor cells took up the nanoballs, and their anti-inflammatory and osteoblastic differentiations were promoted over time. Subsequently, bone augmentation was clearly recognized for up to 8 weeks in transplanted GAMs containing BMP4-nanoballs. Notably, only 1 μg of BMP4-nanoballs induced a sufficient volume of new bone, while 1000 μg of naked pDNAs were required to induce the same level of bone augmentation. These data suggest that applying this anionic vector to the appropriate matrices can facilitate GAM-based bone engineering.


2011 ◽  
Vol 306-307 ◽  
pp. 1693-1697
Author(s):  
Xiao Nan Li ◽  
Mei Shan Pei ◽  
Lu Yan Wang ◽  
Li Wang

Phase behavior of ternary systems involving PEO-PPO-PEO block copolymer (Pluronic P123), room-temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [Bmim]PF6, and glycerol is investigated at 25 °C by using small-angle X-ray scattering (SAXS) techniques. In this ternary system, the structures formed in the binary P123/[Bmim]PF6 system, hexagonal phase (H1) and lamellar phase (Lα), are still obtained. At lower P123/[Bmim]PF6 ratio, the H1 phase can accommodate more than 30 % glycerol. At higher P123/[Bmim]PF6 ratio, the Lα phase only accommodates less than 2 % glycerol and Lα changes to H1 with increasing the glycerol content. Moreover, a phase separation takes place at a higher glycerol content. Solvatophobic interactions between hydrophobic groups of [Bmim]PF6 and P123, coulombic force existing in the polyoxyethylene chain and imidazolium cation, H-bond between P123 and glycerol, accompanying with the force ascribe to the nitrogen of the imidazole ring and the oxygen of alcohol are helpful for the formation of long-range ordered structure.


RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 55374-55381 ◽  
Author(s):  
Peter Černoch ◽  
Zulfiya Černochová ◽  
Svetlana Petrova ◽  
Dana Kaňková ◽  
Joon-Sung Kim ◽  
...  

Water-soluble PNaSS-b-PVDF-b-PNaSS triblock copolymer.


Sign in / Sign up

Export Citation Format

Share Document