Rendering Rayon Fibres Antimicrobial and Thermal-Responsive via Layer-by-Layer Self-Assembly of Functional Polymers

2011 ◽  
Vol 236-238 ◽  
pp. 1103-1106 ◽  
Author(s):  
Yuan Feng Pan ◽  
Hui Ning Xiao

A thermal-responsive polymer was prepared by partially acetalyzing poly(vinyl alcohol) (PVA). The completely reversible polymer aggregation and dissolution occur above and below a low critical solution temperature (LCST) for the aqueous solution of the modified PVA. The partially acetalized PVA (APVA) with higher molecular weight and higher degree of acetalysis exhibited a lower LCST transition and was used as an anionic polymer for polymer complexation. Water-soluble polymer, cationic polyhexamethylene guanidine hydrochloride (CPHGH) with antimicrobial property, was also prepared. In conjunction with APVA, CPHGH created the unique antimicrobial polymer multilayers on the surfaces of rayon fibres via layer by layer (LbL) assembly. AFM images revealed that the particles generated by multilayers became larger after the material was treated at 60°C; while the roughness of the surfaces was increased as the layer number increased and then decreased. Moreover, antimicrobial tests also demonstrated that the rayon fiber assembled with (CPHGH/APVA) multilayers exhibited higher antimicrobial activity against E. coli and s. aureus.

2021 ◽  
Author(s):  
Asmaa Bouyahya ◽  
Berthe-Sandra Sembo-Backonly ◽  
Audrey Favrelle-Huret ◽  
Sébastien Balieu ◽  
Frédéric Guillen ◽  
...  

Abstract We developed a new hybrid material resulting from an innovative supramolecular tripartite association between an ionic liquid covalently immobilized on primary β-cyclodextrins rim and an anionic water-soluble polymer. Two hydrophilic ternary complexes based on native and permethylated β-cyclodextrins substituted with an ionic liquid and immobilized on poly(styrene sulfonate) (CD-IL+PSS− and CD(OMe)IL+PSS−) were obtained by simple dialysis with a cyclodextrin maximal grafting rate of 25% and 20% on the polymer, respectively. These polyelectrolytes are based on electrostatic interactions between the opposite charges of the imidazolium cation of the ionic liquid and the poly(styrene sulfonate) anion. The inclusion properties of the free cavities of the cyclodextrins and the synergic effect of the polymeric matrix were studied with three reference guests such as phenolphthalein, p-nitrophenol, and 2-anilinonaphthalene-6-sulfonic acid using UV-visible, fluorescent, and NMR spectroscopies. The support has been applied successfully in dialysis device to extract and concentrated aromatic model molecule. This simple and flexible synthetic strategy opens the way to new hybrid materials useful for fast and low-cost ecofriendly extraction techniques relevant for green analytical chemistry.


2011 ◽  
Vol 1312 ◽  
Author(s):  
Shin’ichi Warisawa ◽  
Ryosuke Kanameda ◽  
Reo Kometani ◽  
Sunao Ishihara

ABSTRACTIn this paper, we present layer-by-layer stacking method to fabricate self-assembled structures of block copolymers (BCP) toward the out-of-plane direction. Layer-by-layer stacking is realized by transferring a BCP film on one substrate to another. Specifically, a water-soluble polymer film is coated on the former substrate, which is placed and fixed in contact with a target substrate. Consequently, the BCP film is released from the substrate and transferred to the target substrate when immersed in de-ionized water. In our experiment, PS-b-PMMA is used to form and transfer self-assembled structures, and polyvinyl alcohol is used as a water-soluble polymer. We prepared two kinds of target substrates; one has horizontal cylindrical structures by BCP self assembly, and the other has groove structures by EB lithography. In the case of BCP patterned substrate, BCP film with vertical cylindrical structures is transferred onto the line structures of BCP. In the case of EB lithography patterned substrate, BCP film with vertical cylindrical structures is transferred in a doubly suspended condition. Furthermore, vertical and horizontal cylindrical structures are also observed to align along the grooves.


2021 ◽  
Author(s):  
Aranee Pleng Teepakakorn ◽  
Makoto Ogawa

Water-induced self-healing materials were prepared by the hybridization of a water-soluble polymer, poly(vinyl alcohol), with a smectite clay by mixing in an aqueous media and subsequent casting. Without using chemical...


2011 ◽  
Vol 675-677 ◽  
pp. 231-234 ◽  
Author(s):  
Wen Juan Zheng ◽  
Hai Tao Zheng ◽  
Tao Sun ◽  
Pu Liu ◽  
Shinichiro Suye

A redox polymer, poly(ethylenimine)ferrocene (PEI-Fc) was synthesized by attaching ferrocene groups to the backbone of water soluble poly(ethylenimine), and multilayer film in nanoscale was assembled on gold electrode by alternate layer-by-layer adsorption (LBL) of the positively charged PEI-Fc and the negatively charged thermostable diaphorase (DI) from B.Stearothermophilus. The LBL process was monitored and analyzed by quartz crystal microbalance (QCM) technique, which confirmed the formation of the multilayer structure. The electrochemical oxidation of coenzyme (reduced nicotinamide adenine dinucleotide, NADH) was observed on the electrode fabricated with PEI-Fc/DI multilayer film, and the influence of layer number on current response was investigated. The modified electrode retained ca. 65% relative response after storage in buffer for two months and 50% relative response after incubation at 80 °C for 3 min, which inferred that the multilayer structure was unique stable. A NAD-dependent glucose-6-phosphate dehydrogenase (G6PDH) was also immobilized via the same LBL technique, and electrode modified with PEI-Fc/DI/G6PDH film exhibited current response to glucose-6- phosphate in the presence of free NAD+.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Katarzyna Lewandowska ◽  
Aldona Dąbrowska ◽  
Halina Kaczmarek

AbstractThe new blends composed of natural polysaccharide - pectin and synthetic water soluble polymer - poly(vinyl alcohol) (PVA) are attractive materials due to their biocompatibility, non-toxicity and biodegradability. In this work the rheological properties of aqueous solutions of pectin (PEC), poly(vinyl alcohol) and their mixtures at various weight ratios (70/30, 50/50, 30/70) have been investigated. Flow measurements were carried out using a rotary viscometer with concentric cylinder at different temperatures (20-70 ºC) and shear rates (24- 1234 s-1). The flow parameters and energy of activation have been calculated from the flow curves and Arrhenius plots, respectively. It was found that studied polymer solutions exhibited non-Newtonian behavior, moreover, the flow properties were dependent on the blend composition. The result show that practically there was no thixotropy in studied system but some interactions between PVA and pectin in water occurred.


2016 ◽  
Vol 705 ◽  
pp. 68-71 ◽  
Author(s):  
Ga Young Park ◽  
So Young Lee ◽  
Woo Jin Kim ◽  
Jin Hyun Choi

Nanoweb fabricated by electrospinning has a large specific area and a small pore size which can be controlled through a spinning process to enable a strong adsorption and selective permeability. It is required to produce nanofiber of different polymer mixture with a limited miscibility for improvement of physical, chemical, or biological properties. In this study, poly (vinyl alcohol) (PVA)/polyurethane (PU) nanofibers were produced by coaxial electrospinning. PVA (core)/PU (shell) nanofibers were defect-free and had a uniform thickness. The pseudo core/shell structure of PVA/PU nanofibers was confirmed by transmission electron microscopy. The presence of PVA and PU in the nanofibers was identified by 13C solid state nuclear magnetic resonance spectroscopy, fourier transform infrared spectroscopy, and X-ray diffraction analysis. Water contact angle was reduced by incorporation of PVA in a core of PU nanofiber. For variety of biomedical applications, bioactive substances such as antibiotics and proteins can be incorporated in a core of hydrophobic PU nanofiber by coaxial electrospinning of water-soluble polymer/bioactive substance mixture.


1998 ◽  
Vol 180 (16) ◽  
pp. 4146-4153 ◽  
Author(s):  
Margit Sára ◽  
Christine Dekitsch ◽  
Harald F. Mayer ◽  
Eva M. Egelseer ◽  
Uwe B. Sleytr

ABSTRACT The high-molecular-weight secondary cell wall polymer (SCWP) fromBacillus stearothermophilus PV72/p2 is mainly composed ofN-acetylglucosamine (GlcNAc) andN-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein.


Sign in / Sign up

Export Citation Format

Share Document