scholarly journals Issue of Lithium-indium Anode in High Energy and Power All-Solid-State Lithium Batteries

Author(s):  
Shuting Luo ◽  
Zhenyu Wang ◽  
Xuelei Li ◽  
Xinyu Liu ◽  
Haidong Wang ◽  
...  

Abstract All-solid-state lithium batteries (ASSLBs) using sulfide solid electrolytes (SSEs) offer an attractive option for energy storage applications. Lithium anode is the ultimate goal for ASSLBs, but lithium-indium (Li-In) alloy anode is more widely utilized in lab testing owing to the quite stable interface and elimination for the risk of short circuit. However, vigorous growth of Li-In dendrites in SSE is discovered in the present work when a full cell (LiNbO3 coated LiNi0.6Co0.2Mn0.2O2//Li6PS5Cl//Li-In) is cycled in high loading and high rate. Our study demonstrates that Li-In anode is unstable towards SSEs at high current, which induces Li-In dendrite growth enclosing electrolyte particles and eventually results in cell death after a long cycling. The morphology and growth mechanism of Li-In dendrites are revealed by scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) analysis and density function theory (DFT) calculations. Moreover, the differences between Li and Li-In dendrites are systematically compared.

Author(s):  
Ondrej L. Krivanek ◽  
Jonathan P. Ursin ◽  
Neil J. Bacon ◽  
George J. Corbin ◽  
Niklas Dellby ◽  
...  

An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 Å.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kei Nakayama ◽  
Ryo Ishikawa ◽  
Shunsuke Kobayashi ◽  
Naoya Shibata ◽  
Yuichi Ikuhara

Abstract Lithium-excess layered cathode materials such as Li2MnO3 have attracted much attention owing to their high energy densities. It has been proposed that oxygen-release and cation-mixing might be induced by delithiation. However, it is still unclear as to how the delithiated-region grows. Here, by using atomic-resolution scanning transmission electron microscopy combined with electron energy-loss spectroscopy, we directly observe the atomic structures at the interface between pristine and delithiated regions in the partially delithiated Li2MnO3 single crystal. We elucidate that the delithiated regions have extensive amounts of irreversible defects such as oxygen-release and Mn/Li cation-mixing. At the interface, a partially cation disordered structure is formed, where Mn migration occurred only in the specific Mn/Li layers. Besides, a number of dislocations are formed at the interface to compensate the lattice mismatch between the pristine and delithiated regions. The observed oxygen-release and dislocations could govern the growth of delithiated-regions and performance degradation in Li2MnO3.


Author(s):  
John B. Vander Sande ◽  
Thomas F. Kelly ◽  
Douglas Imeson

In the scanning transmission electron microscope (STEM) a fine probe of electrons is scanned across the thin specimen, or the probe is stationarily placed on a volume of interest, and various products of the electron-specimen interaction are then collected and used for image formation or microanalysis. The microanalysis modes usually employed in STEM include, but are not restricted to, energy dispersive X-ray analysis, electron energy loss spectroscopy, and microdiffraction.


2001 ◽  
Vol 7 (S2) ◽  
pp. 342-343
Author(s):  
S. Köstlmeier ◽  
S. Nufer ◽  
T. Gemming ◽  
M. Rühle

The orientation dependence of the fine structure of the Al L1 and L2,3 electron energy loss (EELS) edges in (α-Al2O3 has been investigated by measurements with a dedicated scanning transmission electron microscope (VG HB501 STEM, 100 keV acceleration voltage). α-Al2O3 is an anisotropic solid with a complicated alternating stacking sequence of fee Al and hcp O planes along the [0001] direction [1]. This distingiushes the [0001] direction crystallographically, as the highest-order three-fold rotation axes (C3) of the trigonal crystal structure are parallel to [0001], whereas all other symmetry elements are of lower order. Group theory predicts, that more stringent symmetry selection rules apply when electronic transitions are excited by irradiation parallel to the low-index [0001] zone axis than by irradiation along any other arbitrary direction.Yet, even for a low-energy EELS edge (θE = 0.4 mrad) both scattering parallel and perpendicular to the incident beam direction are likely.


Sign in / Sign up

Export Citation Format

Share Document