scholarly journals Sintering Behavior of BST Nanoparticles at Low Temperature and Electrical Properties of their Ceramics

2020 ◽  
Author(s):  
Jianquan Qi ◽  
Yan Li ◽  
Mengyin Li ◽  
Jiahui Xie ◽  
Tianchi Yu ◽  
...  

Abstract The powders of the Ba0.75Sr0.25TiO3 (BST) nanoparticles were directly synthesized by milling of Ba(OH)2·8H2O, Sr(OH)2·8H2O and Ti(BuO)4 in ethanol at room temperature. They have homogenous grains of ~15 nm and the high sintering activity. The dense ceramics with the density >90% can be obtained at a sintering temperature of ≤950 oC by them with adding 3 wt% sintering aids of Bi2O3 and Li2CO3. The sintering behavior of the BST nanoparticles by adding the aids of Bi2O3 and Li2CO3 is studied carefully. Several Bi-related compounds are involved in the sintering procedure at a different temperature. They enhance the mass transfer and promote the sintering densification. These compounds such as Ba2BiO4 and SrBiO4 appear at 800 oC, LiBa4Bi3O11 and Sr1.2Bi0.8O3 appear over 830 oC, and Bi8.11Ba0.89O13.05 appears at 950 oC. The cation Bi in the ceramics has mixture valences of 3+ and 5+. It makes the ceramics as semiconducting state with the dark gray color and decreases the ceramics resistivities. With the sintering temperature increase, especially at 950 oC, the cation Bi tends back to single valence of +3 in the ceramics. The most of alkaline earth cations in Bi-related compounds will release and resorb into the lattice of BST and drive the densification of the nanoparticles. The BST ceramics can have a peak dielectric constant >6500 at 53 oC, loss <0.025, and resistivity >1012 W·cm when sintered at a temperature of ≥900 oC with 3 wt% sintering aids. They have a potential application for multiple layer ceramic capacitors (MLCC) with silver inner-electrodes.

2009 ◽  
Vol 421-422 ◽  
pp. 61-64 ◽  
Author(s):  
Hai Tao Jiang ◽  
Ji Wei Zhai ◽  
Jing Ji Zhang ◽  
Xi Yao

The effect of 9Bi2O3-CuO mixed oxides as sintering agent on sintering behaviors and dielectric properties of Ba0.6Sr0.4TiO3 (BST) ceramics were investigated. It was found that 9Bi2O3-CuO mixed oxides lowered the sintering temperature about 300°C and that highly denser BST ceramic pellets were obtained by sintering at 975oC with addition of 5.0-10.0wt% mixed oxides. For BST ceramics with 5.0wt% CB content sintered at 975°C, had a moderate dielectric constant (ε=1315), low dielectric loss (0.0067) and high tunability (36%) at dc electric field of 20kV/cm and at room temperature and at 10kHz.


2014 ◽  
Vol 787 ◽  
pp. 338-341
Author(s):  
Cheng Hsing Hsu ◽  
Chia Hao Chang ◽  
Wen Shiush Chen ◽  
Jenn Sen Lin ◽  
Chun Hung Lai

Microwave dielectric properties and microstructures of (Ca0.8Sr0.2)ZrO3 ceramics prepared by the conventional solid-state route have been studied. The values of the dielectric constant (εr) were 22-26. The Q×f values of 10400–11500 GHz were obtained when the sintering temperatures were in the range of 1400–1490°C. The temperature coefficient of the resonant frequency τf was not sensitive to the sintering temperature. The εr value of 26, the Q×f value of 11500 GHz, and the τf value of-9 ppm/°C were obtained for (Ca0.8Sr0.2)ZrO3 ceramics sintering at 1490°C. The ceramic, (Ca0.8Sr0.2)ZrO3 is proposed as a suitable candidate material for application in highly selective microwave ceramic passive components.


2011 ◽  
Vol 199-200 ◽  
pp. 1940-1944 ◽  
Author(s):  
Zhong Zheng Yang ◽  
Zhen Xian Xing ◽  
Zhan Fang Gai ◽  
Huan Qiang Liu

The sintering behavior, physical properties and heat processing changes of bauxite-based homogenized grogs prepared by homogenization process and high temperature sintering using bauxite as starting material were investigated. Results show that the bauxite-based mullite can be synthesized by the method, sintering temperature with and without MgO/CeO2sintering aids are 1600°C and 1700°C separately, the mullite with apparent porosity of<1.0% and 2.5%, bulk density of ≥2.87g•cm-3and 2.75g•cm-3, Refracteriness-Under-Load(RUL) 1600°C and 1620С; changes in the heat processing is divided into three stages: dehydration stage(400°С~900°С ), primary mullitization stage(1000°С ~1200°С) and secondary mullitization stage(>1200°С).


2007 ◽  
Vol 336-338 ◽  
pp. 1062-1064 ◽  
Author(s):  
Fa Qiang Yan ◽  
Fei Chen ◽  
Qiang Shen ◽  
Lian Meng Zhang

In this study, spark plasma sintering (SPS) was applied to prepare α-Si3N4 ceramics of different densities with magnesia, silicon dioxide, alumina as the sintering aids. The sintering behavior and liquid phase sintering (LPS) mechanism were discussed and the factors influencing the density of the prepared samples were analyzed. Microstructures of sintered samples were observed and the phase compositions were analyzed. The results showed that α-Si3N4 ceramics can be sintered by SPS based on the reaction among α-Si3N4 and sintering additives which lead to the liquid phase and the density can be well controlled from 2.48 to 3.09 g/cm3 while the content of the sintering aids changes from 10% to 28.5% and sintering temperature from 1400°C to 1500°C.


2010 ◽  
Vol 434-435 ◽  
pp. 224-227
Author(s):  
Xu Ping Lin ◽  
Jing Tao Ma ◽  
Bao Qing Zhang ◽  
Ji Zhou

The influence of CuO-V2O5-Bi2O3 addition on the sintering behavior, phase composition, microstructure and microwave dielectric properties of Zn3Nb2O8 ceramics were investigated. The co- doping of CuO, V2O5 and Bi2O3 can significantly lower the sintering temperature of Zn3Nb2O8 ceramics from 1150°C to 900°C. The Zn3Nb2O8-0.5wt% CuO-0.5wt% V2O5-2.0wt% Bi2O3 ceramic sintered at 900°C showed a relative density of 97.1%, a dielectric constant (εr) of 18.2, and a quality factor (Q×f) of 36781 GHz. The dielectric properties in this system exhibited a significant dependence on the relative density, content of additives and sintering temperature. The relative density and dielectric constant (εr) of Zn3Nb2O8 ceramics increased with increasing CuO-V2O5-Bi2O3 additions. And also the relative density and dielectric constant of Zn3Nb2O8 ceramics increased by the augment of the sintering temperature.


2007 ◽  
Vol 336-338 ◽  
pp. 279-282
Author(s):  
In Sun Cho ◽  
Sang Gu Kang ◽  
Dong Wan Kim ◽  
Kug Sun Hong

The effects of CuO and V2O5 addition on sintering behaviors and microwave dielectric properties of 0.7Ca2P2O7-0.3TiO2 ceramics were investigated. With CuO and V2O5 addition, the sintering temperature of 0.7Ca2P2O7-0.3TiO2 can be effectively reduced from 1150 to 950oC. The dielectric constant of the low fired 0.7Ca2P2O7-0.3TiO2 ceramics was not significantly changed while the quality factor was affected by additives. The temperature coefficient of resonant frequency value was increased in negative value with the additive contents. V2O5 and CuO additives effectively improved the densification and dielectric properties of 0.7Ca2P2O7-0.3TiO2 ceramics. The correlation between the phase constituents and the dielectric properties was investigated with additive contents.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4187 ◽  
Author(s):  
Min-Hang Weng ◽  
Chihng-Tsung Liauh ◽  
Shueei-Muh Lin ◽  
Hung-Hsiang Wang ◽  
Ru-Yuan Yang

The effect of CuO/B2O3 additions on the sintering behaviors, microstructures, and microwave dielectric properties of 0.95LaAlO3–0.05CaTiO3 ceramics is investigated. It is found that the sintering temperatures are lowered efficiently from 1600 °C to 1350 °C, as 1 wt % CuO, 1 wt % B2O3, and 0.5 wt % CuO +0.5 wt % B2O3 are used as the sintering aids due to the appearance of the liquid phase sintering. The microwave dielectric properties of 0.95LaAlO3–0.05CaTiO3 ceramics with the sintering aid additions are strongly related to the densification and the microstructure of the sintered ceramics. At the sintering temperature of 1300 °C, the 0.95LaAlO3–0.05CaTiO3 ceramic with 0.5 wt % CuO + 0.5 wt % B2O3 addition shows the best dielectric properties, including a dielectric constant (εr) of 21, approximate quality factor (Q × f) of 22,500 GHz, and a temperature coefficient of the resonant frequency (τf) of −3 ppm/°C.


1989 ◽  
Vol 169 ◽  
Author(s):  
S. Myhrai ◽  
A.E. Bocquet ◽  
J.F. Dobsoni ◽  
P. Goodman ◽  
P.C. Healy ◽  
...  

AbstractMeasurements by photoemission spectroscopy have shown that the chemical environments of alkaline earth cations in HTSC compounds are different from the environments of these ions in the prototype perovskite structures. A recently discovered HTSC compound (Pb2Sr2Ca0.5Y0.5Cu3O8) exhibits the exceptional feature of having a typical HTSC signature for Sr, while Ca shows a perovskite-like signature. The crystal-chemical features of the relevant compounds have been correlated with these observations. These correlations may be indicative of inter-layer electronic interactions.


2008 ◽  
Vol 368-372 ◽  
pp. 53-55
Author(s):  
Yun Fei Fu ◽  
Pei Feng Zhang ◽  
Hui Qing Fan ◽  
Xiu Li Chen

Ba0.6Sr0.4TiO3 nanopowders (~ 80 nm in size) were prepared by low temperature hydrothermal process. The process and synthesis mechanism were discussed in detail. Furthermore, the powders were pressed into disc-shaped pellets and sintered at different temperatures. The frequency dependence of the dielectric constant and loss angle tangent of the sintered BST ceramics are measured from room temperature to 500°C and a diffuse dielectric anomaly by the dielectric relaxation was found.


2007 ◽  
Vol 280-283 ◽  
pp. 337-340
Author(s):  
Yuan Fang Qu ◽  
Hua Tao Wang ◽  
Xiao Lei Li ◽  
Wei Bing Ma

The effects of glass additives on the sintering and properties of Ni/(Ba0.92Sr0.08)TiO3 composites were investigated. Due to the addition of glass additives, Ni/ceramic composites with low room-temperature resistivity and obvious PTC effect were obtained at a low sintering temperature. It was shown that glass-additives could form liquid phase that aided the solution and diffusion of solid atoms, acting as sintering aids to accelerate the sintering and lower the sintering temperature. The room-temperature resistivity decreased first and increased later with the increasing content of glassadditives, which was explained by two functions of glass-additives, decreasing interface contact resistance as sintering aids and adding volume resistance as insulators. Moreover, a suitable amount of glass-additives could enhance the PTC effect unexpectedly, which was attributed to the decrease of the contact resistance existing at the ceramic/ceramic interface.


Sign in / Sign up

Export Citation Format

Share Document