scholarly journals Study On ECG Data Dependency For Atrial Fibrillation Detection Based On Residual Networks

Author(s):  
Hyo-Chang Seo ◽  
Seok Oh ◽  
Segyeong Joo

Abstract Atrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with limited datasets and were evaluated within the same datasets, which makes their performance generally drops on the external datasets, known as data dependency. For this study, three different databases from PhysioNet were used to investigate the data dependency of deep learning-based AF detection algorithm using the residual neural network (Resnet). Resnet 18, 34, 50 and 152 model were trained with raw electrocardiogram (ECG) signal extracted from independent database. The highest accuracy was about 98–99% which is evaluation results of test dataset from the own database. On the other hand, the lowest accuracy was about 53–92% which was evaluation results of the external dataset extracted from different source. There are data dependency according to the train dataset and the test dataset. However, the data dependency decreased as a large amount of train data.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyo-Chang Seo ◽  
Seok Oh ◽  
Hyunbin Kim ◽  
Segyeong Joo

AbstractAtrial fibrillation (AF) is an arrhythmia that can cause blood clot and may lead to stroke and heart failure. To detect AF, deep learning-based detection algorithms have recently been developed. However, deep learning models were often trained with limited datasets and were evaluated within the same datasets, which makes their performance generally drops on the external datasets, known as data dependency. For this study, three different databases from PhysioNet were used to investigate the data dependency of deep learning-based AF detection algorithm using the residual neural network (Resnet). Resnet 18, 34, 50 and 152 model were trained with raw electrocardiogram (ECG) signal extracted from independent database. The highest accuracy was about 98–99% which is evaluation results of test dataset from the own database. On the other hand, the lowest accuracy was about 53–92% which was evaluation results of the external dataset extracted from different source. There are data dependency according to the train dataset and the test dataset. However, the data dependency decreased as a large amount of train data.


2020 ◽  
pp. 147592172094006
Author(s):  
Lingxin Zhang ◽  
Junkai Shen ◽  
Baijie Zhu

Crack is an important indicator for evaluating the damage level of concrete structures. However, traditional crack detection algorithms have complex implementation and weak generalization. The existing crack detection algorithms based on deep learning are mostly window-level algorithms with low pixel precision. In this article, the CrackUnet model based on deep learning is proposed to solve the above problems. First, crack images collected from the lab, earthquake sites, and the Internet are resized, labeled manually, and augmented to make a dataset (1200 subimages with 256 × 256 × 3 resolutions in total). Then, an improved Unet-based method called CrackUnet is proposed for automated pixel-level crack detection. A new loss function named generalized dice loss is adopted to detect cracks more accurately. How the size of the dataset and the depth of the model affect the training time, detecting accuracy, and speed is researched. The proposed methods are evaluated on the test dataset and a previously published dataset. The highest results can reach 91.45%, 88.67%, and 90.04% on test dataset and 98.72%, 92.84%, and 95.44% on CrackForest Dataset for precision, recall, and F1 score, respectively. By comparing the detecting accuracy, the training time, and the information of datasets, CrackUnet model outperform than other methods. Furthermore, six images with complicated noise are used to investigate the robustness and generalization of CrackUnet models.


Author(s):  
WANSONG XU ◽  
TIANWU CHEN ◽  
FANYU DU

Objective: The detection of QRS complexes is an important part of computer-aided analysis of electrocardiogram (ECG). However, most of the existing detection algorithms are mainly for single-lead ECG signals, which requires high quality of signal. If the signal quality decreases suddenly due to some interference, then the current algorithm is easy to cause misjudgment or missed detection. To improve the detection ability of QRS complexes under sudden interference, we study the QRS complexes information on multiple leads in-depth, and propose a two-lead joint detection algorithm of QRS complexes. Methods: Firstly, the suspected QRS complexes are screened on the main lead. For the suspected QRS complexes with low confidence and the complexes that may be missed, further accurate detection and joint judgment shall be carried out at the corresponding position of the auxiliary lead. At the same time, the adaptive threshold adjustment algorithm and backtracking mechanism are used to modify the detection results. Results: The proposed detection algorithm is validated using 48 ECG records of the MIT-BIH arrhythmia database, and achieves average detection accuracy of 99.71%, sensitivity of 99.88% and positive predictivity of 99.81%. Conclusion: The proposed algorithm has high accuracy, which can effectively deal with the sudden interference of ECG signal. Meanwhile, the algorithm requires small amount of computation, and can be embedded into hardware for real-time detection.


Author(s):  
Ashish Sharma ◽  
Shivnarayan Patidar

This chapter presents a new methodology for detection and identification of cardiovascular diseases from a single-lead electrocardiogram (ECG) signal of short duration. More specifically, this method deals with the detection of the most common cardiac arrhythmia called atrial fibrillation (AF) in noisy and non-clinical environment. The method begins with appropriate pre-processing of ECG signals in order to get the RR-interval and heart rate (HR) signals from them. A set of indirect features are computed from the original and the transformed versions of RR-interval and HR signals along with a set of direct features that are obtained from ECG signals themselves. In all, 47 features are computed and subsequently they are fed to an ensemble system of bagged decision trees for classifying the ECG recordings into four different classes. The proposed method has been evaluated with 2017 PhysioNet/CinC challenge hidden test dataset (phase II subset) and the final F1 score of 0.81 is obtained.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Qin Qin ◽  
Jianqing Li ◽  
Yinggao Yue ◽  
Chengyu Liu

R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.


2020 ◽  
Vol 7 (2) ◽  
pp. 53
Author(s):  
Ziti Fariha Mohd Apandi ◽  
Ryojun Ikeura ◽  
Soichiro Hayakawa ◽  
Shigeyoshi Tsutsumi

Heartbeat detection for ambulatory cardiac monitoring is more challenging as the level of noise and artefacts induced by daily-life activities are considerably higher than monitoring in a hospital setting. It is valuable to understand the relationship between the characteristics of electrocardiogram (ECG) noises and the beat detection performance in the cardiac monitoring system. For this purpose, three well-known algorithms for the beat detection process were re-implemented. The beat detection algorithms were validated using two types of ambulatory datasets, which were the ECG signal from the MIT-BIH Arrhythmia Database and the simulated noise-contaminated ECG signal with different intensities of baseline wander (BW), muscle artefact (MA) and electrode motion (EM) artefact from the MIT-BIH Noise Stress Test Database. The findings showed that signals contaminated with noise and artefacts decreased the potential of beat detection in ambulatory signal with the poorest performance noted for ECG signal affected by the EM artefacts. In conclusion, none of the algorithms was able to detect all QRS complexes without any false detection at the highest level of noise. The EM noise influenced the beat detection performance the most in comparison to the MA and BW noises that resulted in the highest number of misdetections and false detections.


Author(s):  
Mohand Lokman Ahmad Al-dabag ◽  
Haider Th. Salim ALRikabi ◽  
Raid Rafi Omar Al-Nima

One of the common types of arrhythmia is Atrial Fibrillation (AF), it may cause death to patients. Correct diagnosing of heart problem through examining the Electrocardiogram (ECG) signal will lead to prescribe the right treatment for a patient. This study proposes a system that distinguishes between the normal and AF ECG signals. First, this work provides a novel algorithm for segmenting the ECG signal for extracting a single heartbeat. The algorithm utilizes low computational cost techniques to segment the ECG signal. Then, useful pre-processing and feature extraction methods are suggested. Two classifiers, Support Vector Machine (SVM) and Multilayer Perceptron (MLP), are separately used to evaluate the two proposed algorithms. The performance of the last proposed method with the two classifiers (SVM and MLP) show an improvement of about (19% and 17%, respectively) after using the proposed segmentation method so it became 96.2% and 97.5%, respectively.


2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Asmida Ismail ◽  
Siti Anom Ahmad ◽  
Azura Che Soh ◽  
Mohd Khair Hassan ◽  
Hazreen Haizi Harith

The object detection system is a computer technology related to image processing and computer vision that detects instances of semantic objects of a certain class in digital images and videos. The system consists of two main processes, which are classification and detection. Once an object instance has been classified and detected, it is possible to obtain further information, including recognizes the specific instance, track the object over an image sequence and extract further information about the object and the scene. This paper presented an analysis performance of deep learning object detector by combining a deep learning Convolutional Neural Network (CNN) for object classification and applies classic object detection algorithms to devise our own deep learning object detector. MiniVGGNet is an architecture network used to train an object classification, and the data used for this purpose was collected from specific indoor environment building. For object detection, sliding windows and image pyramids were used to localize and detect objects at different locations, and non-maxima suppression (NMS) was used to obtain the final bounding box to localize the object location. Based on the experiment result, the percentage of classification accuracy of the network is 80% to 90% and the time for the system to detect the object is less than 15sec/frame. Experimental results show that there are reasonable and efficient to combine classic object detection method with a deep learning classification approach. The performance of this method can work in some specific use cases and effectively solving the problem of the inaccurate classification and detection of typical features.


2021 ◽  
Author(s):  
Yunfan Chen ◽  
Chong Zhang ◽  
Chengyu Liu ◽  
Yiming Wang ◽  
Xiangkui Wan

Abstract Atrial fibrillation is one of the most common arrhythmias in clinics, which has a great impact on people's physical and mental health. Electrocardiogram (ECG) based arrhythmia detection is widely used in early atrial fibrillation detection. However, ECG needs to be manually checked in clinical practice, which is time-consuming and labor-consuming. It is necessary to develop an automatic atrial fibrillation detection system. Recent research has demonstrated that deep learning technology can help to improve the performance of the automatic classification model of ECG signals. To this end, this work proposes effective deep learning based technology to automatically detect atrial fibrillation. First, novel preprocessing algorithms of wavelet transform and sliding window filtering (SWF) are introduced to reduce the noise of the ECG signal and to filter high-frequency components in the ECG signal, respectively. Then, a robust R-wave detection algorithm is developed, which achieves 99.22% detection sensitivity, 98.55% positive recognition rate, and 2.25% deviance on the MIT-BIH arrhythmia database. In addition, we propose a feedforward neural network (FNN) to detect atrial fibrillation based on ECG records. Experiments verified by a 10-fold cross-validation strategy show that the proposed model achieves competitive detection performance and can be applied to wearable detection devices. The proposed atrial fibrillation detection model achieves an accuracy of 84.00%, the detection sensitivity of 84.26%, the specificity of 93.23%, and the area under the receiver working curve of 89.40% on the mixed dataset composed of Challenge2017 database and MIT-BIH arrhythmia database.


2013 ◽  
Vol 64 (5) ◽  
Author(s):  
Anita Ahmad ◽  
Salinda Buyamin ◽  
Nurhamizah Senin

This paper presents the behaviour of the dominant frequency of the electrocardiogram (ECG) signal for atrial fibrillation patients before and after preprocessing. The preprocessing method (QRST subtraction) is useful to obtain a clean atrial signal before performing frequency analysis. The QRST subtraction was performed and the dominant frequency before and after QRST subtraction was compared. This study demonstrates a positive result with this technique in comparison with another established technique. 


Sign in / Sign up

Export Citation Format

Share Document