scholarly journals High-performance perovskite solar cells obtained by hybridizing SnS quantum dots with CH3NH3PbI3

Author(s):  
Liya Zhou ◽  
Xiaoying Zhong ◽  
Hua Fan ◽  
Jiangying Lu ◽  
Yingjun Ou

Abstract In this work, SnS quantum dot (QDs) were added into the CH3NH3PbI3 (MAPI) perovskite precursor solution to fabricate MAPI/SnS QDs films with preferred (110) orientation and a perovskite film with large crystal size. This hybrid material showed increased light harvesting ability and a red shift with respect to the number of SnS QDs. As a result, an enhanced performance was achieved in the perovskite solar cells (PSCs) based on MAPI/SnS QDs prepared from the S5, exhibiting a maximum photoelectric conversion efficiency (PCE) of 10.15%, an open-circuit voltage (Voc) of 1.41 V and a fill factor (FF) of 65%.

Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 461 ◽  
Author(s):  
Masaya Taguchi ◽  
Atsushi Suzuki ◽  
Takeo Oku ◽  
Sakiko Fukunishi ◽  
Satoshi Minami ◽  
...  

Perovskite solar cells, in which decaphenylcyclopentasilane (DPPS) layers were formed on the surface of the perovskite layer, were fabricated, and the influence on photovoltaic characteristics was investigated. The devices were fabricated by a spin-coating technique, and the surface morphology and crystal structures were investigated by scanning electron microscopy and X-ray diffraction. By adding the DPPS, the fill factor and open circuit voltage were increased, and the photoelectric conversion efficiency was improved. A stability test in ambient air was carried out for seven weeks, and the photoelectric conversion efficiencies were remarkably improved for the devices with DPPS.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 750
Author(s):  
Tingting Chen ◽  
Rui He ◽  
Fan Zhang ◽  
Xia Hao ◽  
Zhipeng Xuan ◽  
...  

Perovskite solar cells have exhibited astonishing photoelectric conversion efficiency and have shown a promising future owing to the tunable content and outstanding optoelectrical property of hybrid perovskite. However, the devices with planar architecture still suffer from huge Voc loss and severe hysteresis effect. In this research, Guanidine hydrobromide (GABr) post-treatment is carried out to enhance the performance of MAPbI3 n-i-p planar perovskite solar cells. The detailed characterization of perovskite suggests that GABr post-treatment results in a smoother absorber layer, an obvious reduction of trap states and optimized energy level alignment. By utilizing GABr post-treatment, the Voc loss is reduced, and the hysteresis effect is alleviated effectively in MAPbI3 solar cells. As a result, solar cells based on glass substrate with efficiency exceeding 20%, Voc of 1.13 V and significantly mitigated hysteresis are fabricated successfully. Significantly, we also demonstrate the effectiveness of GABr post-treatment in flexible device, whose efficiency is enhanced from 15.77% to 17.57% mainly due to the elimination of Voc loss.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840068
Author(s):  
Rui Liu ◽  
Yanyan Yuan

Flexible solar cells have drawn wide attention because of their high photoelectric conversion efficiency, convenient preparation, excellent bendability and lower cost advantages. This paper introduces the effect of mesoporous layer on the morphology of CH3NH3PbI3 films. The uniformity and optical transmittance of the different films were also studied in detail. By adjusting the ratio of TiO2 and ZrO2, mesoporous structure of CH3NH3PbI3 perovskite solar cells were prepared by two-step spin coating. The fabricated films were investigated by XRD, SEM and spectrophotometer. The results indicate that perovskite layers have good surface morphology, density and coverage with TiO2 and ZrO2 composition ratio of 1:1. These well-structured thin films lay a good foundation for the preparation of high performance flexible perovskite solar cells.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rui He ◽  
Tingting Chen ◽  
Zhipeng Xuan ◽  
Tianzhen Guo ◽  
Jincheng Luo ◽  
...  

Abstract Wide-bandgap (wide-E g , ∼1.7 eV or higher) perovskite solar cells (PSCs) have attracted extensive attention due to the great potential of fabricating high-performance perovskite-based tandem solar cells via combining with low-bandgap absorbers, which is considered promising to exceed the Shockley–Queisser efficiency limit. However, inverted wide-E g PSCs with a minimized open-circuit voltage (V oc) loss, which are more suitable to prepare all-perovskite tandem devices, are still lacking study. Here, we report a strategy of adding 1,3,5-tris (bromomethyl) benzene (TBB) into wide-E g perovskite absorber to passivate the perovskite film, leading to an enhanced average V oc. Incorporation of TBB prolongs carrier lifetimes in wide-E g perovskite due to reduction of defects in perovskites and makes a better energy level matching between perovskite absorber and electron transport layer. As a result, we achieve the power conversion efficiency of 17.12% for our inverted TBB-doped PSC with an enhanced V oc of 1.19 V, compared with that (16.14%) for the control one (1.14 V).


2011 ◽  
Vol 121-126 ◽  
pp. 4229-4233
Author(s):  
Ping Chuan Zhang ◽  
Yun Long Kong ◽  
Hang Sen Zhang

This paper design an intelligent photovoltaic cell test system. The high performance dual-core 16bits SPCE061A microprocessors are used as control and data processing center. The powerful data operation ability of SPCE061A makes it to carry out software filter for measured data and enhances testing precision. the experiments demonstrated the test system can measure the characteristic parameters of photovoltaic cells: open voltage, current, the fill factor and photoelectric conversion efficiency, draw photovoltaic cells I-V curve, find the best working points , and also have the characteristics of miniaturization and intelligent.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


2012 ◽  
Vol 629 ◽  
pp. 332-338 ◽  
Author(s):  
Zhi Hua Tian ◽  
Jian Xi Yao ◽  
Mi Na Guli

TiO2 films with three-dimensional web-like structure have been prepared by the photo polymerization-induced phase separation method (PIPS). Scanning electron microscopy and X-ray diffraction were used to characterize the as-prepared TiO2 films. The results showed that the film texture could be tuned by changing the composition of the precursor solution. The TiO2 film with web-like structure exhibited high photocatalytic activity for the degradation of methylene blue (MB) dye. The as-prepared films were used as the photo-anodes in dye-sensitized solar cells (DSCs). The photoelectric conversion efficiency of the DSCs was significantly enhanced by changing the POGTA/TTB in the precursor solution. Because of the increased dye adsorption active sites and efficient electron transport in the TiO2 anode film, a photoelectric conversion efficiency of 3.015% was obtained.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 978
Author(s):  
Chaoqun Lu ◽  
Weijia Zhang ◽  
Zhaoyi Jiang ◽  
Yulong Zhang ◽  
Cong Ni

The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new method which can be used to achieve a double-layer HTL, by inserting a CuI layer between the perovskite layer and Spiro-OMeTAD layer via a solution spin coating process. The CuI layer deposited on the surface of the perovskite film directly covers the rough perovskite surface, covering the surface defects of the perovskite, while a layer of CuI film avoids the defects caused by Spiro-OMetad pinholes. The double-layer HTLs improve roughness and reduce charge recombination of the Spiro-OMeTAD layer, thereby resulting in superior hole extraction capabilities and faster hole mobility. The CuI/Spiro-OMeTAD double-layer HTLs-based devices were prepared in N2 gloveboxes and obtained an optimized PCE (photoelectric conversion efficiency) of 17.44%. Furthermore, their stability was improved due to the barrier effect of the inorganic CuI layer on the entry of air and moisture into the perovskite layer. The results demonstrate that another deposited CuI film is a promising method for realizing high-performance and air-stable PSCs.


Sign in / Sign up

Export Citation Format

Share Document