scholarly journals Chews First Delaunay Triangulation refinement Scheme-Based Positioning of RSUs for Optimal Network Coverage in VANETs

Author(s):  
Selvakumari P ◽  
Sree Rathna Lakshmi ◽  
Sheela D ◽  
Chinnasamy A

Abstract The temporal network fragmentation and uncertain vehicle mobility are considered to impact the communication connectivity among the vehicular nodes of the network. In this context, Road Side Units (RSUs) play an anchor role in enhancing the vehicle-to-vehicle (V2V) communication connectivity and support Vehicle-to-Infrastructure (V2I) communication. In the current scenario, deploying a huge number of RSUs in the vehicular networks at an initial stage is completely impossible as it incurs high installation cost and authority restriction. Moreover, the optimal placement of RSUs in the vehicular network needs to be enforced for attaining maximized network coverage. In this paper, Chews First Delaunay Triangulation Refinement Scheme (CFDTRS) is proposed for optimal positioning of RSUs in order to attain optimal network coverage in the vehicular network with minimized cost. This CFDTRS considered the factors of vehicular density, number of obstacles in the map, intersection popularity and global coverage into account during the placement of RSUs. It is proposed with the objective of deploying required number of RSUs within the range of data transmission in order to achieve maximal coverage in the convex map, such that each area of the convex map is completely covered with at least a single RSU in the existence of multiple number of obstacles. The simulation results of the proposed CFDTRS attained from the real time situations of simplex, moderate and complex maps confirmed improved packet delivery rate of 9.32%, throughput by 10.74% with minimized packet loss of 9.14% and reduced end-to-end delay of 19.31$, compared to the benchmarked schemes considered for investigation.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
J. Avilés ◽  
J. C. Mayo-Maldonado ◽  
O. Micheloud

A hybrid evolutionary approach is proposed to design off-grid electrification projects that require distributed generation (DG). The design of this type of systems can be considered as an NP-Hard combinatorial optimization problem; therefore, due to its complexity, the approach tackles the problem from two fronts: optimal network configuration and optimal placement of DG. The hybrid scheme is based on a particle swarm optimization technique (PSO) and a genetic algorithm (GA) improved with a heuristic mutation operator. The GA-PSO scheme permits finding the optimal network topology, the optimal number, and capacity of the generation units, as well as their best location. Furthermore, the algorithm must design the system under power quality requirements, network radiality, and geographical constraints. The approach uses GPS coordinates as input data and develops a network topology from scratch, driven by overall costs and power losses minimization. Finally, the proposed algorithm is described in detail and real applications are discussed, from which satisfactory results were obtained.


1970 ◽  
Vol 2 ◽  
pp. 61-62
Author(s):  
Óscar Urra ◽  
Sergio Ilarri

In a vehicular network, vehicles can exchange interesting information (e.g., about accidents, traffic status, etc.) using short-range wireless communications. Besides, the vehicles can be equipped with additional sensors that can directly obtain data from the environment. How to efficiently process and collect these data is an open problem. We argue that mobile agent technology could be helpful.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zongzheng Wang ◽  
Ping Dong ◽  
Tao Zheng ◽  
Hongke Zhang

The rapid development of the transportation industry has brought about the demand for massive data transmission. In order to make use of a large number of heterogeneous network resources in vehicular network, the research of applying network coding to multipath transmission has become a hot topic. Network coding can better solve the problems of packet reordering and low aggregation efficiency. The determination of coding scale is the key to network coding scheme. However, the existing research cannot adapt to the different characteristics of network resources in vehicular network, leading to larger decoding time cost and lower bandwidth aggregation efficiency. In this paper, we propose a network coding scheme called Delay Determined Group Size (DDGS), which could adaptively adjust the coding group according to the heterogeneous wireless networks state. The mathematical analysis and process design of the DDGS scheme are discussed in detail. Through a large number of simulations, we proved that the DDGS scheme is significantly superior to other coding group determination schemes in terms of decoding time cost and bandwidth aggregation efficiency.


Author(s):  
Abdul Rahim ◽  
Dr. V.A.Sankar Ponnapalli

With the advancements in Vehicular communication technologies in automobile engineering leads to enhancement of modern societies by utilizing Internet based data communication in a vehicular network to effectively avoid accidents and traffic congestions using Multi Input Multi Output (MIMO) cooperative relay technique for enhancing the aspects of performance by reduction of transmission energy consumption by taking the advantage of spatial and temporal diversity gain in a vehicular network as the conventional routing based on topology is merely not suitable over a dynamic vehicular network environment as GPS is used to identify effective route [4].In this paper we propose applications of cooperative communication techniques and their survey for identifying close relationship between forwarding and addressing techniques in a vehicular network and further we compare performance and energy consumption of cooperative techniques with the traditional multi-hop technique over Rayleigh channel using MQAM for optimization.


2019 ◽  
Vol 10 (3) ◽  
pp. 39-67
Author(s):  
Sangeetha J ◽  
Keerthiraj Nagaraj ◽  
Ram Prakash Rustagi ◽  
Balasubramanya Murthy K N

The Relay Station (RS) deployment problem for WiMAX networks is studied. Unlike Base Station (BS), RS does not need a wire-line backhaul and has much lower hardware complexity. Hence, usage of RSs can significantly minimize the deployment cost and maximize the network coverage of the system. To solve the RS deployment problem, the authors have used a nature inspired technique known as Glowworm Swarm Optimization (GSO). Different cases have been considered for a single fixed BS, to find the feasible number of RSs and its optimal placement in WiMAX networks. Computational experiments are conducted to show the effect of RS deployments in different distribution scenarios. This article also shows the impact of placing RSs at optimal locations to serve given Mobile Stations (MSs) that are distributed arbitrarily in a given geographic region such that the cost is minimized, and the network coverage is maximized. The results obtained from the GSO algorithm are compared with k-means algorithm and it is observed that GSO performs better than k-means algorithm.


2018 ◽  
Vol 7 (4.4) ◽  
pp. 13
Author(s):  
Tae Ho Kwon ◽  
Jai Eun Kim ◽  
Ki Soo An ◽  
Rappy Saha ◽  
Ki Doo Kim

The paradigm of software-defined network (SDN) is being applied to vehicle scenarios in order to eliminate this heterogeneity of vehicular network infrastructure and to manage packet flow in an application- and user-centrically flexible and efficient manner. However, owing to the random mobility of vehicles and the unpredictable road communication environment, efficient vehicle-based SDN development needs further research. In this study, we propose the concept of a sub-control plane for supporting and backing up, at the data plane level, various functions of the control plane, which plays a key role in SDN. The sub-control plane can be intuitively understood through the image processing techniques used in color-independent visual-MIMO (multiple input multiple output) networking, and the function of the control plane can be backed up through various vehicle-based recognition and tracking algorithms under the situation of disconnection between the data plane and the control plane. The proposed sub-control plane is expected to facilitate efficient management of the software-defined vehicular network (SDVN) and improve vehicular communication performance and service quality.  


Author(s):  
Kun-Chan Lan

A Delay Tolerant Network (DTN) is one type of challenged network where network contacts are intermittent or link performance is highly variable or extreme. In such a network, a complete path does not exist from source to destination for most of the time. In addition, the path can be highly unstable and may change or break unexpectedly. To make communication possible in a delay tolerant network, the intermediate nodes need to take custody of data during the blackout and forward it toward the destination when the connectivity resumes. A vehicular network nicely falls into the context of DTN since the mobility of vehicles constantly causes the disruption of link connectivity’s between vehicles. In this chapter, the authors discuss some research challenges and issues which might occur in a Delay Tolerant Network and how they are related to vehicular networks.


2013 ◽  
Vol 2 (2) ◽  
pp. 199-212 ◽  
Author(s):  
G. S. Mauger ◽  
K. A. Bumbaco ◽  
G. J. Hakim ◽  
P. W. Mote

Abstract. Station locations in existing environmental networks are typically chosen based on practical constraints such as cost and accessibility, while unintentionally overlooking the geographical and statistical properties of the information to be measured. Ideally, such considerations should not take precedence over the intended monitoring goal of the network: the focus of network design should be to adequately sample the quantity to be observed. Here we describe an optimal network design technique, based on ensemble sensitivity, that objectively locates the most valuable stations for a given field. The method is computationally inexpensive and can take practical constraints into account. We describe the method, along with the details of our implementation, and present-example results for the US Pacific Northwest, based on the goal of monitoring regional annual-mean climate. The findings indicate that optimal placement of observing stations can often be highly counterintuitive, thus emphasizing the importance of objective approaches. Although at coarse scales the results are generally consistent, sensitivity tests show important differences, especially at smaller spatial scales. These uncertainties could be reduced with improvements in datasets and improved estimates of the measurement error. We conclude that the method is best suited for identifying general areas within which observations should be focused, and suggest that the approach could serve as a valuable complement to land surveys and expert input in designing new environmental observing networks.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6212
Author(s):  
Mohammed A. Alanezi ◽  
Houssem R. E. H. Bouchekara ◽  
Muhammad S. Javaid

Internet of Things (IoT) is characterized by a system of interconnected devices capable of communicating with each other to carry out specific useful tasks. The connection between these devices is ensured by routers distributed in a network. Optimizing the placement of these routers in a distributed wireless sensor network (WSN) in a smart building is a tedious task. Computer-Aided Design (CAD) programs and software can simplify this task since they provide a robust and efficient tool. At the same time, experienced engineers from different backgrounds must play a prominent role in the abovementioned task. Therefore, specialized companies rely on both; a useful CAD tool along with the experience and the flair of a sound expert/engineer to optimally place routers in a WSN. This paper aims to develop a new approach based on the interaction between an efficient CAD tool and an experienced engineer for the optimal placement of routers in smart buildings for IoT applications. The approach follows a step-by-step procedure to weave an optimal network infrastructure, having both automatic and designer-intervention modes. Several case studies have been investigated, and the obtained results show that the developed approach produces a synthesized network with full coverage and a reduced number of routers.


Sign in / Sign up

Export Citation Format

Share Document