scholarly journals Visual-MIMO for Software-Defined Vehicular Networks

2018 ◽  
Vol 7 (4.4) ◽  
pp. 13
Author(s):  
Tae Ho Kwon ◽  
Jai Eun Kim ◽  
Ki Soo An ◽  
Rappy Saha ◽  
Ki Doo Kim

The paradigm of software-defined network (SDN) is being applied to vehicle scenarios in order to eliminate this heterogeneity of vehicular network infrastructure and to manage packet flow in an application- and user-centrically flexible and efficient manner. However, owing to the random mobility of vehicles and the unpredictable road communication environment, efficient vehicle-based SDN development needs further research. In this study, we propose the concept of a sub-control plane for supporting and backing up, at the data plane level, various functions of the control plane, which plays a key role in SDN. The sub-control plane can be intuitively understood through the image processing techniques used in color-independent visual-MIMO (multiple input multiple output) networking, and the function of the control plane can be backed up through various vehicle-based recognition and tracking algorithms under the situation of disconnection between the data plane and the control plane. The proposed sub-control plane is expected to facilitate efficient management of the software-defined vehicular network (SDVN) and improve vehicular communication performance and service quality.  

Author(s):  
Abdul Rahim ◽  
Dr. V.A.Sankar Ponnapalli

With the advancements in Vehicular communication technologies in automobile engineering leads to enhancement of modern societies by utilizing Internet based data communication in a vehicular network to effectively avoid accidents and traffic congestions using Multi Input Multi Output (MIMO) cooperative relay technique for enhancing the aspects of performance by reduction of transmission energy consumption by taking the advantage of spatial and temporal diversity gain in a vehicular network as the conventional routing based on topology is merely not suitable over a dynamic vehicular network environment as GPS is used to identify effective route [4].In this paper we propose applications of cooperative communication techniques and their survey for identifying close relationship between forwarding and addressing techniques in a vehicular network and further we compare performance and energy consumption of cooperative techniques with the traditional multi-hop technique over Rayleigh channel using MQAM for optimization.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4742 ◽  
Author(s):  
Yixin He ◽  
Daosen Zhai ◽  
Ruonan Zhang ◽  
Xiaojiang Du ◽  
Mohsen Guizani

As one of the main applications of the Internet of things (IoT), the vehicular ad-hoc network (VANET) is the core of the intelligent transportation system (ITS). Air–ground integrated vehicular networks (AGIVNs) assisted by unmanned aerial vehicles (UAVs) have the advantages of wide coverage and flexible configuration, which outperform the ground-based VANET in terms of communication quality. However, the complex electromagnetic interference (EMI) severely degrades the communication performance of UAV sensors. Therefore, it is meaningful and challenging to design an efficient anti-interference scheme for UAV data links in AGIVNs. In this paper, we propose an anti-interference scheme, named as Mary-MCM, for UAV data links in AGIVNs based on multi-ary (M-ary) spread spectrum and multi-carrier modulation (MCM). Specifically, the Mary-MCM disperses the interference power by expanding the signal spectrum, such that the anti-interference ability of AGIVNs is enhanced. Besides, by using MCM and multiple-input multiple-output (MIMO) technologies, the Mary-MCM improves the spectrum utilization effectively while ensuring system performance. The simulation results verify that the Mary-MCM achieves excellent anti-interference performance under different EMI combinations.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Hoa TT. Nguyen ◽  
Minh T. Nguyen ◽  
Hai T. Do ◽  
Hoang T. Hua ◽  
Cuong V. Nguyen

The vehicular network is taking great attention from both academia and industry to enable the intelligent transportation system (ITS), autonomous driving, and smart cities. The system provides extremely dynamic features due to the fast mobile characteristics. While the number of different applications in the vehicular network is growing fast, the quality of service (QoS) in the 5G vehicular network becomes diverse. One of the most stringent requirements in the vehicular network is a safety-critical real-time system. To guarantee low-latency and other diverse QoS requirements, wireless network resources should be effectively utilized and allocated among vehicles, such as computation power in cloud, fog, and edge servers; spectrum at roadside units (RSUs); and base stations (BSs). Historically, optimization problems have mostly been investigated to formulate resource allocation and are solved by mathematical computation methods. However, the optimization problems are usually nonconvex and hard to be solved. Recently, machine learning (ML) is a powerful technique to cope with the complexity in computation and has capability to cope with big data and data analysis in the heterogeneous vehicular network. In this paper, an overview of resource allocation in the 5G vehicular network is represented with the support of traditional optimization and advanced ML approaches, especially a deep reinforcement learning (DRL) method. In addition, a federated deep reinforcement learning- (FDRL-) based vehicular communication is proposed. The challenges, open issues, and future research directions for 5G and toward 6G vehicular networks, are discussed. A multiaccess edge computing assisted by network slicing and a distributed federated learning (FL) technique is analyzed. A FDRL-based UAV-assisted vehicular communication is discussed to point out the future research directions for the networks.


Author(s):  
Abdul Rahim ◽  
Dr. V.A.Sankar Ponnapalli

With the advancements in Vehicular communication technologies in automobile engineering leads to enhancement of modern societies by utilizing Internet based data communication in a vehicular network to effectively avoid accidents and traffic congestions using Multi Input Multi Output (MIMO) cooperative relay technique for enhancing the aspects of performance by reduction of transmission energy consumption by taking the advantage of spatial and temporal diversity gain in a vehicular network as the conventional routing based on topology is merely not suitable over a dynamic vehicular network environment as GPS is used to identify effective route [4].In this paper we propose applications of cooperative communication techniques and their survey for identifying close relationship between forwarding and addressing techniques in a vehicular network and further we compare performance and energy consumption of cooperative techniques with the traditional multi-hop technique over Rayleigh channel using MQAM for optimization.


2017 ◽  
Vol 10 (3) ◽  
pp. 383-389
Author(s):  
Deepali Borakhade ◽  
Sanjay Pokle

In this paper, multiple-input–multiple output (MIMO) antenna with dual-band frequency reconfiguration is presented. The proposed antenna consists of two symmetrical pentagon radiating elements. These radiating elements support bands of 1.5 GHz (GPS) and 2.4 GHz (Wi-Fi) frequency. The two PIN diodes are appropriately located on slot line in order to control the current flowing through the radiator. All simulated results are compared and confirmed with measured results. The antenna has VSWR ⩽1.8 and isolation of −28 dB. The advantage of this antenna is that bandwidth is increased by switching of PIN diode in the range from 80 MHz up to maximum 300 MHz. These characteristics demonstrate that proposed antenna is an attractive solution for a multimode application such as GPS, Wi-Fi routers, vehicular communication, etc. where wideband is required.


Author(s):  
Komathy K.

Vehicular Ad Hoc Networks (VANET) is an emerging application of Intelligent Transport System, which is mainly to assist public safety applications such as collision avoidance between the vehicles or between vehicles and other obstacles such as pedestrians. At the same time, it challenges the data communication because of its high mobility, short link lifetime, and frequent network fragmentations. Existing spectrum standard for vehicular communication underutilizes the frequency bands in the sparsely used regions when the licensed users are not deploying them even at the peak hours of the road. Congestion or route stalling is unavoidable in vehicular networking and this builds an impression that there is always a shortage of spectrum. A solution would be to have a cognitive radio that can utilize the spectrum that is not heavily used so as to ease congestion in other areas. This chapter brings out the application of cognitive radios in vehicular environments, a new and relatively less explored area of research. This chapter looks into a few existing studies in the literature which have focused on spectrum sensing techniques, routing methodology, and security for cognitive radio vehicular networks. In addition, this chapter also discusses the impact of changes in the vehicular network on the radio propagation channel and in turn on the operation and performance of the cognitive radio vehicular network. Finally, future directions in research have highlighted the existing challenges in specific areas.


Author(s):  
Rinki Sharma

Vehicular communication is going to play a significant role in the future intelligent transportation systems (ITS). Due to the highly dynamic nature of vehicular networks (VNs) and need for efficient real-time communication, the traditional networking paradigm is not suitable for VNs. Incorporating the SDN technology in VNs provides benefits in network programmability, heterogeneity, connectivity, resource utility, safety and security, routing, and traffic management. However, there are still several challenges and open research issues due to network dynamicity, scalability, heterogeneity, interference, latency, and security that need to be addressed. This chapter presents the importance of vehicular communication in future ITS, the significance of incorporating the SDN paradigm in VNs, taxonomy for the role of SDVN, the software-defined vehicular network (SDVN) architecture, and open research issues in SDVN.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3466 ◽  
Author(s):  
Prabu Subramani ◽  
Ganesh Babu Rajendran ◽  
Jewel Sengupta ◽  
Rocío Pérez de Prado ◽  
Parameshachari Bidare Divakarachari

Visible Light Communication (VLC) is a promising field in optical wireless communications, which uses the illumination infrastructure for data transmission. The important features of VLC are electromagnetic interference-free, license-free, etc. Additionally, Multiple-Input-Multiple-Output (MIMO) techniques are enabled in the VLC for enhancing the limited modulation bandwidth by its spectral efficiency. The data transmission through the MIMO-VLC system is corrupted by different interferences, namely thermal noise, shot noise and phase noise, which are caused by the traditional fluorescent light. In this paper, an effective precoding technique, namely Block Bi-Diagonalization (BBD), is enabled to mitigate the interference occurring in the indoor MIMO-VLC communications. Besides, a Quadrature Amplitude Modulation (QAM) is used to modulate the signal before transmission. Here, the indoor MIMO-VLC system is developed to analyze the communication performance under noise constraints. The performance of the proposed system is analyzed in terms of Bit Error Rate (BER) and throughput. Furthermore, the performances are compared with three different existing methods such as OAP, FBM and NRZ-OOK-LOS. The BER value of the proposed system of scenario 1 is 0.0501 at 10 dB, which is less than that of the FBM technique.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Dimitrios Kosmanos ◽  
Nikolas Prodromou ◽  
Antonios Argyriou ◽  
Leandros A. Maglaras ◽  
Helge Janicke

Vehicular ad hoc networks have emerged as a promising field of research and development, since they will be able to accommodate a variety of applications, ranging from infotainment to traffic management and road safety. A specific security-related concern that vehicular ad hoc networks face is how to keep communication alive in the presence of radio frequency jamming, especially during emergency situations. Multiple Input Multiple Output techniques are proven to be able to improve some crucial parameters of vehicular communications such as communication range and throughput. In this article, we investigate how Multiple Input Multiple Output techniques can be used in vehicular ad hoc networks as active defense mechanisms in order to avoid jamming threats. For this reason, a variation of spatial multiplexing is proposed, namely, vSP4, which achieves not only high throughput but also a stable diversity gain upon the interference of a malicious jammer.


2021 ◽  
Vol 2 (6) ◽  
pp. 43-55
Author(s):  
Kei Sakaguchi ◽  
Takumi Yoneda ◽  
Masashi Iwabuchi ◽  
Tomoki Murakami

Millimeter-Wave (mmWave) communications are a key technology to realize ultra-high data rate and ultra-low latency wireless communications. Compared with conventional communication systems in the microwave band such as 4G/LTE, mmWave communications employ a higher frequency band which allows a wider bandwidth and is suitable for large capacity communications. It is expected to be applied to various use cases such as mmWave cellular networks and vehicular networks. However, due to the strong diffraction loss and the path loss in the mmWave band, it is difficult or even impossible to achieve high channel capacity for User Equipment (UE) located in Non-Line-Of-Sight (NLOS) environments. To solve the problem, the deployment of relay nodes has been considered. In this paper, we consider the use of massive analog Relay Stations (RSs) to relay the transmission signals. By relaying the signals by a large number of RSs, an artificial Multiple-Input Multiple-Output (MIMO) propagation environment can be formed, which enables mmWave MIMO communications to the NLOS environment. We describe a theoretical study of a massive relay MIMO system and extend it to include multi-hop relays. Simulations are conducted, and the numerical results show that the proposed system achieves high data rates even in a grid-like urban environment.


Sign in / Sign up

Export Citation Format

Share Document